摘要
本文研究了保持Ricci曲率不变的Finsler射影变换。给定一个紧致无边的n维可微流形M,证明了:对于一个从M上的Berwald度量到Riemann度量的C射影变换,如果Berwald度量的Ricci曲率关于Riemann度量的迹不超过Riemann度量的标量曲率,则该射影变换是平凡的。
In this paper we first study the Finsler projective change which preserves the Ricci curvature. Furthermore,given a compact and boundaryless n-dimensional differentiable manifold M, we show that any pointwise C-projective change from a Berwald space (M,F) to a Riemann space (M,F) is trivial if the trace of the Ricci curvature Ric of F with respect to F is less or equal to the scalar curvature of F.
出处
《数学杂志》
CSCD
北大核心
2005年第5期473-479,共7页
Journal of Mathematics
基金
SupportedbytheNationalNaturalScienceFundationofChina(10371138),theScienceFoundationofChongqingEducationCommittee