期刊文献+

自校正标量加权信息融合Kalman滤波器

Self- tuning Information Fusion Kalman Filter Weighted by Scalars
下载PDF
导出
摘要 对含未知噪声统计的多传感器系统,用现代时间序列分析方法,基于自回归滑动平均(ARMA)新息模型的在线辨识和求解相关函数矩阵方程组,可在线估计噪声统计,进而在按标量加权线性最小方差最优信息融合准则下,提出了自校正标量加权信息融合Kalman滤波器。它具有渐近最优性,且比每个局部自校正Kalman滤波器精度高,算法简单,便于实时应用。一个目标跟踪系统的仿真例子说明了其有效性。 For the muhisensor systems with unkonwn noise statistics, using the modern time series analysis method, based on on-line identification of the autoregressive moving average (ARMA) innovation model, and based on the solution of the matrix equations for correlation function, the noise statistics can on-line be estimated, and further under the linear minimum variance optimal information fusion criterion weighted by scalars, a self-tuning information fusion Kalman filter weighted by scalars is presented . It has asymptotic optimality, and its accuracy is higher than each local self-tuning Kalman filter. Its algorithm is simple, and is suitable for real time applicatons. A simulation example for a target tracking system shows its effectiveness.
出处 《科学技术与工程》 2005年第22期1696-1700,共5页 Science Technology and Engineering
基金 国家自然科学基金(60374026) 黑龙江大学自动控制重点实验室基金资助
关键词 多传感器信息融合 标量加权融合ARMA新息模型 系统辨识 噪声方差估计 自校 KALMAN滤波器 muhisensor information fusion fusion weighted by scalars ARMA innovation model system identification noise variance estimation self-tunting Kalman filter
  • 相关文献

参考文献4

二级参考文献10

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部