期刊文献+

ETHs:n-of-N模型下基于指数划分的一种数据流大纲维护算法

ETHs: A Data Stream Synopsis Maintaining Algorithm Based on Exponential Partition in n-of-N Model
下载PDF
导出
摘要 数据流大纲的维护对于DSMS非常重要:流数据的实时性、持续性和有序性(即,老化特性)使得查询引擎需要根据实时的概要信息自适应地调整执行计划,保持其执行效率。本文提出一种新的数据流大纲结构—ETNs,它通过指数划分方法将数据流在时间域上划分为指数区间,每个区间用具有较小空间复杂度和时间复杂度的Tiny直方图来记录区间的概要信息,使得ETHs既能够反映数据流上某些数据的衰减,又能够实现n-of-N模型下的共享计算,在εN误差范围内持续地维护最近N个元素的概要信息,具有较小的时间代价和空间代价。实验证明,ETHs是数据流上的一种较理想的大纲结构。 Maintaining data stream synopsis is very important in DSMS. Data stream tuple is real-time, continuous and ordered (namely, aged). Query engine needs to adjust query plan by on-line synopsis to guarantee its processing efficiency. In this paper, we propose a new synopsis structure called ETHs, which partitions time dimension into exponential intervals by EH partitioning technique. In each subinterval, we use tiny histogram which has small space and time complexity to record summary information. So, it can reflect the stateness of certain data elements and share com- putations under mof-N model. With a guaranteed precision of εN,it continuously maintaining the summary information of the most recent N dements over data stream with little time and space overhead. Performance study shows that ETHs is a good data stream synosis maintaining algorithm.
出处 《计算机科学》 CSCD 北大核心 2005年第11期81-84,共4页 Computer Science
关键词 数据流 大纲 n-of-N 等深 指数划分 f-N模型 维护算法 指数 时间复杂度 空间复杂度 Data stream, Synopsis, n-of-N, Equi-Depth, Exponential partition
  • 相关文献

参考文献9

  • 1Manku G S, Rajagopalan S, Lindsay B G. Approximate Medians and other Quantiles in One Pass and with Limited Memory. In:SIGMOD Conf. 1998. 426-435.
  • 2Manku G S, Rajagopalan S, Lindsay B G. Random Sampling Techniques for Space Efficient Online Computation of Order Statistics of Large Datasets. In:Proc. ACM SIGMOD Intl. Conf. on Management of Data, 1999. 251-262.
  • 3Greenwald M S, Khanna S. Space-Efficient Online Computation of Quantile Summarieg In: Proc. of the 2001 ACM SIGMOD Int'l Conf. on Management of Data. Santa Barbara: ACM Press,2001.58-66.
  • 4Guha S, Koudas N. Approximating a Data Stream for Querying and Estimation: Algorithms and Performance valuation. In: Proc.of the 16th ICDE Conf. 2002. 567-576.
  • 5Datar M,Gionis A, Indyk P,Motwani R. Maintaining stream statistics over sliding windows. In:Proc. of the 13th Annual ACMSIAM Symp. on Dis-crete Algorithms, 2002. 635-644.
  • 6Qiao L, Agrawal D, Abbadi A E. Supporting sliding window queries for continuous data stresmg In:Proc. 15th Int. Conf. on Scientific and Statistical Database Management, 2003. 85-94.
  • 7Ioannidis Y E,Poosala V. Histogram-based approximation of setvalued query-answers. In:Proc. of the 1999 Intl. Conf. on Very Large Data Bases, 1999. 174-185.
  • 8Poosala V, Ioannidis Y, Haas P, Shekita E. Improved histograms for selectivity estimation of range predicates. In: Proc. of ACM SIGMOD Conf, 1996. 294-305.
  • 9Piatetsky-Shapiro G, Connell C. Accurate Estimation of the Number of Tuples Satisfying a Condition. In:ACM SIGMOD Intl. Conf. on the Management of Data, 1984. 256-275.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部