摘要
运用C0-半群理论研究一类由可修,可靠的人与机器构成的系统解的渐近性质.首先证明在虚轴上除了0以外其他所有点都属于该算子的豫解集,其次证明0是对应于该系统的主算子及其共轭算子的几何与代数重数为1的特征值,由此推出该系统的时间依赖解当时刻趋向于无穷时强收敛于系统的稳态解.
We study asymptotic property of the solution of the model describing a repairable, standby human machine system by using C0-semigroup theory. First we prove that all points on the imaginary axis except for zero belong to the resolvent set of the operator corresponding to the model, second prove that 0 is an eigenvalue of the operator and its adjoint operator with geometric multiplicity and algebraic multiplicity one, last by using theabove results we obtain that the time-dependent solution of the model strongly converges to the steady-state solution of the model.
出处
《新疆大学学报(自然科学版)》
CAS
2005年第4期416-424,共9页
Journal of Xinjiang University(Natural Science Edition)
基金
教育部重点项目(No:205180)
新疆维吾尔自治区高校研究计划优秀青年学者奖励基金(No:XJEDU2004E05)
关键词
特征值
几何重数
共轭算子
豫解集
eigenvalue, geometric multiplicity, adjoint operator, resolvent set