期刊文献+

高效液相色谱-在线消解-氢化物发生原子吸收光谱联用技术研究 被引量:18

High Performance Liquid Chromatography Combined with Atomic Absorption Spectrometry Using Ultraviolet Digestion-Hydride Generation Interface
下载PDF
导出
摘要 运用自行设计的接口,实现了高效液相色谱与原子吸收光谱的联用。通过对常见砷化合物进行形态分析,考察了自行设计的高效液相色谱-紫外在线消解-氢化物发生原子吸收光谱联用(HPLC-UV-HGAAS)接口的性能。实现了将分离后不能直接用于氢化物发生的大分子,通过紫外“在线”消解成小分子砷化合物的目的。确定了仪器的最优化分析条件。建立了快速、直接、连续、在线的HPLC-UV-HGAAS元素形态分析方法。 The coupling of high performance liquid chromatography (HPLC) with atomic absorption spectrometry (AAS) was achieved by using a simple laboratory-built ultraviolet (UV)-hydride generation (HG) interface. Compared with the former techinque, a 0.4 m quartz tube was used for UV digestion instead of the 5 m teflon coil without decreasing the UV digestion efficiency of the organic arsenic compounds. As a nesult, the volume of the interface was greatly minished, so the miniaturization and integration of the instrument was achieved . The coupling instrument was used to separate four arsenic species ( arsenite , arsenate , methylar - sonic acid, dimethylarsinic acid ) that are of toxic importance. The optimized analysis conditions were obtained. The results showed good repeatability ( RSD 〉 6.56% ), good linearity ( r 〉 0. 997 ) and low detection ( detection limit 〉 14.4 mg/L). Then the performance for on-line digestion of organic arsenic species including arsenobetaine (AsB) and arsenocholine (AsC) was investigated. A rapid, direct, continuous, online HPLC-UV-HGAAS hyphenated technique was developed.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2005年第11期1522-1526,共5页 Chinese Journal of Analytical Chemistry
基金 国家自然科学基金(No.20375022) 科技部(No.2002ba906a28)资助项目
关键词 高效液相色谱 原子吸收光谱 联用技术 元素形态分析 仪器接口 氢化物发生 在线 消解 形态分析方法 High performance liquid chromatography, atomic absorption spectrometry, hyphenated technique, element speciation, interface, arsenic
  • 相关文献

参考文献9

  • 1Kot A, Namiesnik J. Trac-Trends Anal. Chem., 2000, 19 (2-3): 69~79.
  • 2Zhang X R, Cornelis R, de Kimpe J, Mees L. J. Anal. At. Spectrom., 1996, 11(11):1075~1079.
  • 3Cabredo S, Galban J, Sanz J. Talanta, 1998, 46 (4): 631~638.
  • 4Gruter U M, Kresimon J, Hirner A V. Fresen J. Anal. Chem., 2000, 368(1): 67~72.
  • 5康建珍,段太成,刘杰,陈杭亭,曾宪津.毛细管电泳-电感耦合等离子质谱联用的接口设计[J].分析化学,2004,32(2):262-266. 被引量:12
  • 6Villa-Lojo M C, Alonso-Rodriguez E, Lopez-Mahia P, Muniategui-Lorenzo S, Prada-Rodriguez D. Talanta, 2002, 57(4): 741~750.
  • 7Simon S, Tran H, Pannier F, Potin-Gautier M. J. Chromatogr. A., 2004, 1024(1-2): 105~113.
  • 8Zhang X R, Cornelis R, de Kimpe, Mees L. Anal. Chim. Acta, 1996, 319(1-2): 177~185.
  • 9欧阳津,时彦,张新荣.液相色谱分离-氢化物原子吸收测定血清中不同形态的有机砷化合物[J].分析化学,1999,27(10):1151-1155. 被引量:22

二级参考文献22

  • 1[1]Matz S G,Elder R C,Tepperman K.J.Anal.At.Spectrom.,1989,4:767~771
  • 2[2]Gardiner P E,Braetter P,Gercken B,Tomiak A.J.Anal.At.Spectrom.,1987,2:375~378
  • 3[3]Owen L M W,Crews H M,Hutton R C,Walsh A.Analyst,1992,117:649~655
  • 4[4]Dean J R,Munro S,Ebdon L,Crews H M,Massey R C.J.Anal.At.Spectrom.,1987,2:607~610
  • 5[5]Crews H M,Dean J R,Ebdon L,Massey R C.Analyst,1989,114:895~899
  • 6[6]Kikuo T,Watanabe T.Anal.Sci.,1991,7:695~698
  • 7[7]Gercken B,Barnes R M.Anal.Chem.,1991,63:283~287
  • 8[8]Olesik J W,Kinzer J A,Olesik S V.Anal.Chem.,1995,67:1~12
  • 9[9]Lu Q,Bird S M,Barnes R M.Anal.Chem.,1995,67:2949~2956
  • 10[10]Kinzer J A,Olesik J W,Olesik S V.Anal.Chem.,1996,68:3250~3257

共引文献32

同被引文献1035

引证文献18

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部