期刊文献+

基于广义回归网络的动态权重回归型神经网络集成方法研究 被引量:6

Dynamically Weighted Ensemble Neural Networks with Generalized Regression Neural Network for Solving Regression Problems
下载PDF
导出
摘要 神经网络集成技术能有效地提高神经网络的预测精度和泛化能力,已成为机器学习和神经计算领域的一个研究热点。针对回归分析问题提出了一种动态确定结果合成权重的神经网络集成构造方法,在训练出个体神经网络之后,根据各个体网络在输入空间上对训练样本的预测误差,应用广义回归网络来动态地确定各个体网络在特定输入空间上的权重。实验结果表明,与传统的简单平均和加权平均方法相比,本集成方法能取得更好的预测精度。 Combining the outputs of several neural networks into an aggregate output often gives improved accuracy over any individual output. This paper presents an ensemble method for regression that has advantages over weighted average combining techniques. Generally, the output of an ensemble is a weighted sum which are weights fixed. The ensembles are weighted dynamically, the weights dynamically determined from the predicted accuracies of the trained networks with training dataset, the more accurate a network seems to be of its prediction, the higher the weight. This is implemented by generalized regression neural network. Empirical results show that this method improved on prediction accuracy.
出处 《计算机应用研究》 CSCD 北大核心 2005年第12期41-43,72,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(40201021)
关键词 神经网络集成 BP网络 动态权重 广义回归神经网络 Neural Network Ensemble BP Neural Network Dynamic Weight Generalized Regression Neural Network
  • 相关文献

参考文献7

  • 1周志华,陈世福.神经网络集成[J].计算机学报,2002,25(1):1-8. 被引量:245
  • 2吴建鑫,陈兆乾,周志华.基于最优权值的选择性神经网络集成方法[J].模式识别与人工智能,2001,14(4):476-480. 被引量:4
  • 3L K Hansen, P Salamon. Neural Network Ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10):993-1001.
  • 4D Jiménez. Dynamically Weighted Ensemble Neural Networks for Classification[C]. The IEEE International Joint Conference on Computational Intelligence, 1998.753-756.
  • 5A Tsymbal, S Puuronen. Bagging and Boosting with Dynamic Intergration of Classifiers[C].The 4th European Conference on Principles of Data Mining and Knowledge Discovery Lycon, France, 2000.116-125.
  • 6D F Specht. A General Regression Neural Network[J]. IEEE Tran-sactions on Neural Networks, 1991, 2(6):568-576.
  • 7S Borra, A D Ciaccio. Improving Nonparametric Regression Methods by Bagging and Boosting[J]. Computional Statistics & Data Analysis, 2002, 38:407-420.

二级参考文献3

共引文献246

同被引文献57

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部