期刊文献+

一类具有退化性和奇异性的拟线性椭圆方程正解的注记 被引量:1

Some Notes on the Positive Solutions for a Class of Quasi-linear Elliptic Equations with Degeneracy and Singularity
下载PDF
导出
摘要 讨论一类主部为p-Laplace的具有退化性和奇异性的拟线性椭圆方程的正解.给出了在空间维数为一时所论问题有无界解的条件,以及在高维空间时,区域充分规则和星形情形下,所论边值问题在Sobolev空间无解的条件.运用函数变换等技巧,克服了由于退化性和奇异性带来的困难,对p≠2时的某些结论做了进一步补充. Positive solutions of quasi-linear elliptic equations with degeneracy and singularity for a class of p-Laplace problems are discussed. For one dimension, the conditions of boundless solutions are given. And for multi-dimension the conditions of the problems with sufficiently regular and star-shaped domain are also given, which have no solutions in Sobolev space. The techniques including functional transformation were used to overcome the difficulties coming from the degeneracy and singularity of the problems. A further complementarity of the equations for p ≠ 2 is given, too.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2005年第6期741-745,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金青年基金(批准号:1001015) 教育部优秀教师教学和科研奖励基金(批准号:[2000]26)
关键词 正解 存在性 不存在性 positive solution existence nonexistence
  • 相关文献

参考文献10

  • 1Ambrosetti A,Rabinowitz P H.Dual Variational Methods in Critical Point Theory and Applications [J].J Functional Analysis,1973,14:349-381.
  • 2Céline A.Some Results on Positive Solutions of Equations Including the p-Laplacian Operator [J].Nonlinear Analysis,2003,55:191-207.
  • 3Bensoussan A,Boccardo L,Murat F.On a Nonlinear Partial Differential Equation Having Natural Growth Terms and Unbounded Solution [J].Ann Inst H Poincaré Anal Non Linéaire,1988,5(4):347-364.
  • 4Boccardo L,Galloueet T,Murat F.A Unified Presentation of Two Existence Results for Problems with Natural Growth [J].Progress in Partial Differential Equations:the Metzsurveys,1992,2:127-137.
  • 5Boccardo L,Gallout T,Orsina L.Existence and Nonexistence of Solutions for Some Nonlinear Elliptic Equations [J].J Anal Math,1997,73:203-223.
  • 6Boccardo L,Murat F,Puel J P.Existence de Solutions non Borneées Pour Certaines (E)quations Quasi-lináires [J].Portugal Math,1982,41(1/4):507-534.
  • 7Brezis H,Nirenberg L.Removable Singularities for Nonlinear Elliptic Equations [J].Topol Methods Nonlinear Anal,1997,9(2):201-219.
  • 8Murat F,Porretta A.Stability Properties,Existence and Nonexistence of Renormalized Solutions for Elliptic Equations with Measure Data [J].Communications in Partial Differential Equations,2002,27(11/12):2318-2394.
  • 9Pohozaev S.Eigenfunctions of the Equation Δu+λf(u)=0 [J].Soviet Math,1965,5:1408-1411.
  • 10Luigi O,Jean-Pierre P.Positive Solutions for a Class of Nonlinear Elliptic Problems Involving Quasilinear and Semilinear Terms [J].Communications in Partial Differential Equations,2001,26(9/10):1665-1689.

同被引文献7

  • 1Bensoussan A, Boccardo L, Murat F. On a Nonlinear Partial Differential Equation Having Natural Growth Terms and Unbounded Solution [ J]. Ann Inst H Poincare Anal Nonlineaire, 1988, 5 (4) : 347-364.
  • 2Boccardo L, Gallouet T. Strongly Nonlinear Elliptic Equations Having Natural Growth Terms and L1 Data [ J ]. Nonlinear Anal: Theory, Methods & Applications, 1992, 19(6) : 573-579.
  • 3Arcoya D, Baffle S, Martinez-Aparicio P J. Singular Quasilinear Equations with Quadratic Growth in the Gradient without Sign Condition [J]. J Math Anal Appl, 2009, 350( 1 ): 401-408.
  • 4Arcoya D, Martinez-Aparicio P J. Quasilinear Equations with Natural Growth [ J ]. Rev Mat Iberoamericana, 2008, 24(2) : 597-616.
  • 5Arcoya D, Carmona J, Leonori T. Existence and Nonexistence of Solutions for Singular Quadratic Quasilinear Equations [J]. J Differential Equations, 2009, 246(10) : 4006-4042.
  • 6Arcoya D, Ruiz D. The Ambrosetti-Prodi Problem for the p-Laplace Operator [ J ]. Commu Partial Diff Equa, 2006, 31 (6) : 849-865.
  • 7魏晓丹.一类非线性奇异椭圆方程解的存在性和多重性[J].吉林大学学报(理学版),2008,46(4):653-654. 被引量:1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部