摘要
讨论一类主部为p-Laplace的具有退化性和奇异性的拟线性椭圆方程的正解.给出了在空间维数为一时所论问题有无界解的条件,以及在高维空间时,区域充分规则和星形情形下,所论边值问题在Sobolev空间无解的条件.运用函数变换等技巧,克服了由于退化性和奇异性带来的困难,对p≠2时的某些结论做了进一步补充.
Positive solutions of quasi-linear elliptic equations with degeneracy and singularity for a class of p-Laplace problems are discussed. For one dimension, the conditions of boundless solutions are given. And for multi-dimension the conditions of the problems with sufficiently regular and star-shaped domain are also given, which have no solutions in Sobolev space. The techniques including functional transformation were used to overcome the difficulties coming from the degeneracy and singularity of the problems. A further complementarity of the equations for p ≠ 2 is given, too.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2005年第6期741-745,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金青年基金(批准号:1001015)
教育部优秀教师教学和科研奖励基金(批准号:[2000]26)
关键词
正解
存在性
不存在性
positive solution
existence
nonexistence