期刊文献+

可控微结构支架光固化快速成形间接构造方法 被引量:4

STEREOLITHOGRAPHY RAPID PROTOTYPING INDIRECT FABRICATION APPROACH OF SCAFFOLDS WITH CONTROLLED MICROSTRUCTURE
下载PDF
导出
摘要 提出一种以计算机辅助设计(CAD)和光固化快速成形为基础,精确设计和控制支架内部微观结构,实现支架外形与内部可控微结构一体化制造的方法。根据实际CT数据,应用三维CAD软件重构骨骼外形;依据利于细胞生长和促进成骨的原则,设计不同结构的支架内部微管道,控制微管道的尺寸、形状、走向、分支以及相互连通性。利用光固化快速成形技术构造相应的树脂模具,在模具中填充生物材料,待其固化后,通过热分解去除树脂模具,形成具有可控微结构的支架。光学显微镜下观察支架内部微管道结构,其结果与设计相符合。与传统支架构造方法相比,该方法在对支架外形重构和内部微结构制造的控制方面得到了改善。 An approach based on CAD and stereolithography rapid prototyping is proposed, which provides precise design and control of internal microstructure for scaffolds, achieves the integrated fabricated of external shape and internal microstructure of scaffolds. According to CT data, external shape of skeleton is reconstructed using CAD software. On the principle of facilitating cell growth and osteogensis, the internal microstructure including pore geometry, size, orientation, irtterconnectivity and branching is designed. The resin molds of scaf- folds are fabricated by stereolithography and the biomaterials are filled into the molds.Aider biomaterials in situ hardening, the molds are removed by pyrolysis The scaffolds with controlled microstucture are achieved. According to the observation under light microscope, the results indicate that the external shape and internal microstructure of scaffolds are in cornforo mity with the design. Compared with traditional scaffold fabrications; this method provides enhanced control over scaffold shape and internal microstruture.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2005年第11期86-90,共5页 Journal of Mechanical Engineering
基金 国家自然科学基金(50235020)教育部优秀青年教师教学与科研奖励基金资助项目。
关键词 可控微结构 支架 快速成形 间接构造 Controlled microstructure Scaffolds Rapid prototyping Indirect fabrication
  • 相关文献

参考文献8

  • 1Taboas J M, Maddox R D, Krebsbach P H, et al. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials, 2003, 24: 181~194.
  • 2Kalita S J, Bose S, Hosick H L, et al. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Materials Science and Engineering C, 2003 23:611~620.
  • 3Ang T H, Sultana F S A, Hutmacher D W, et al. Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispensing system. Materials Science and Engineering C,2002, 20:35~42.
  • 4Wilson C E, Bruijn J D D, Blitterswijk C A V, et al. Design and fabrication of standardized hydroxyapatite scaffolds with a defined macro-architecture by rapid prototyping for bone-tissue-engineering research. J. Biomed. Mater. Res.,2004, 68A: 123~132.
  • 5Lam C X F, Mo X M, Teoh S H, et al. Scaffold development using 3D printing with a starch-based polymer. Materials Science and Engineering C, 2002, 20: 49~56.
  • 6Cooke M N, Fisher J P, Dean D, et al. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrow. J. Biomed. Mater. Res. Part. B: Appl.Biomater., 2002, 64B: 65~69.
  • 7Hutmacher D W. Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000, 21 : 2 529~2 543.
  • 8Hollister S J, Maddox R D, Taboas J M. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials, 2002, 23: 4 095 ~4 103.

同被引文献76

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部