期刊文献+

用推广的逆散射法求NLS方程的双孤子解 被引量:1

原文传递
导出
摘要 <正>众所周知,非线性Schr(?)dinger方程(NLS方程)是最重要的非线性演化方程之一,它的多孤子解原则上已能用多种方法求得.其中逆散射法无疑是应用最广、最富成果的方法.在该方法中,一个重要的基本假定是穿透系数的所有极点都是一阶的.然而除Kdv方程外,这一假定并未得到证明.故本文突破了这一假定的限制,将逆散射法推广于高阶极点的情形,导出了更加普遍的逆散射问题方程组,并作为一个最简单的特例,求出了与一个二阶极点相应的双孤子解.1 逆散射法的推广考虑两分量散射问题式中t、x分别代表时、空坐标,为两分量函数,U与V为2×2矩阵,式中u(x,t)为散射势,λ为复常数(本征值),(?)与┃u┃分别代表u的复共轭与模,下标表示对相应变量求偏导数.(1)与(2)式相容的条件是u满足如下NLS方程:iu_t+U_(xx)+2┃u┃~2u=0.(4)假定当┃x┃→∞时,u→0,则(1)式的两基本解分别满足如下渐近条件:
作者 颜家壬
出处 《科学通报》 EI CAS CSCD 北大核心 1996年第10期881-884,共4页 Chinese Science Bulletin
  • 相关文献

参考文献1

  • 1彭启才,孤子理论.逆问题方法,1991年

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部