期刊文献+

基于雅可比-傅里叶矩的细胞模式识别 被引量:4

Cell Recognition with Jacobi-Fourier Moments
下载PDF
导出
摘要 细胞学检查自动化是生物医学工程研究的重要课题。文中介绍了雅可比-傅里叶矩,它具有多畸不变性。多种临床细胞涂片模式识别表明,该矩不但是一种高度浓缩的图像特征,还有较好的抗畸变、抗噪声性能,可用于快速准确的细胞学自动化识别。 Automatic cytology test is a major research issue in the field of biomedical engineering. The Radial-Harmonic-Fourier Moment presented in this paper is multi-distortion invariant. Pattern recognition experiment on clinical cell slice shows that Jacobi-Fourier Moment is not only a highly concentrated image feature but also has good property of anti-distortion and anti-noise. It can be used in fast and accurate automatic cell recognition.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2005年第5期531-534,545,共5页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(No.60262001) 内蒙古自然科学基金资助项目(No.201301)
关键词 模式识别 细胞学 cell recognition cytology moment
  • 相关文献

参考文献7

  • 1Prokop RJ, Reeves AP. A survey of moment-based techniques for unoccluded object representation and recognition [ J ]. Graph Model Image Proc, 1992,54(5) :438 - 460.
  • 2Hu MK. Visual pattern recognition by moment invariants[J]. IRE Trans Inf Theory, 1962,1T-8:179 - 187.
  • 3Teague MR.Image analysis via the general theory of moments[J] .J Opt Soc Am, 1980,70(8) :920 - 930.
  • 4Sheng YL, Shen LX. Orthogonal Fourier-Mellin moments for invariant pattern recognition [ J ]. J Opt Soc Am A, 1994,11 ( 6 ): 1748 - 1757.
  • 5Ping ZL, Wu RG, Sheng YL. Image description with ChebyshevFourier moments[J] .J Opt Soc Am A,2002,19(9): 1748- 1754.
  • 6Ren HP, Ping ZL, Bo WR, et al. Multidistortion-invariant image recognition with radial harmonic Fourier moments[ J]. J Opt Soc Am A 2003,20(4) :631 - 637.
  • 7任海萍,平子良,博午日亘,盛云龙,陈盛祖,吴文凯.用雅可比-傅里叶矩进行图像描述[J].光学学报,2004,24(1):5-10. 被引量:9

二级参考文献7

  • 1Prokop R J, Reeves A P. A survey of moment-based techniques for unoccluded object representation and recognition. Graphical Models and Image Processing,1992, 54(5) :438-460.
  • 2Hu M K. Visual pattern recognition by moment invariants.IEEE Trans Inf Theory, 1962, IT-8(2) :179-187.
  • 3Teague M R. Image analysis via the general theory of moments. J. Opt. Soc. Am. , 1980, 70(8):920-930.
  • 4Sheng Y L, Shen L X. Orthogonal Fourier-Mellin moments for invariant pattern recognition. J. Opt. Soc.Am. (A), 1994, 11(6):1748-1757.
  • 5Ping Z L, Wu R G, Sheng Y L. Image description with Chebyshev-Fourier moments. J. Opt. Soc. Am. (A),2002, 19(8) :1748-1754.
  • 6The C H, Chin R T. On image analysis by the methods of moments. IEEE Trans Pattern Anal Mach Intell, 1988,10(4) :496-513.
  • 7Liao S X, Pawlak M. On image analysis by moments. IEEE Trans Pattern Anal Mach Intell , 1996, 18(3):254-266.

共引文献8

同被引文献26

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部