摘要
在现实世界里,AI系统难免受到噪声的影响.系统有效工作与否取决于它对噪声的敏感性如何.解释学习EBL(explanation-basedlearning)也不例外.本文探讨了在例子受到噪声影响的情况下,解释学习的处理问题,提出了一个算法NR-EBL(noise-resistantEBL).与现有的解释学习方法不同,NR-EBL在训练例子含有噪声时仍然可以学习,以掌握实际的问题分布;和类似的工作不同,NR-EBL指出了正确识别概念对于噪声规律的依赖性,试图从训练例子集合发现和掌握噪声的规律.可以相信,在识别概念时,借助于对噪声规律的认识,NR-EBL可比EBL和类似工作有更高的识别率.NR-EBL是解释学习和统计模式识别思想的结合.它把现有的解释学习模型推广到例子含有噪声的情形,原来的EBL算法只是它的特例.
in the real world, Al systems arc constantly and adversely influenced bynoisy data. This is also true of EBL (explanation-based learning). This paper discusseshow to cope with noisy data in explanation - based learning and proposes a NR -EBL(noise resistant explanation - based learning) algorithm. Unlike existing algorithms,NR-EBI. can learn macro rules and find the problem distribution when there is noise intraining examples. Also unlike similar work, NR-EBI. reveals the dependency of classifying examples correctly upon the regularities of noise and attempts to detect noise regularities from a set of training examples. With the help of knowledge of noise regularities,NR -EBI. can have a higher rate of correct recognition than traditional algorithms and previous work. NR EBI. is the combination of explanation - based learning and statisticalpattern recognition. Traditional algorithms are only special cases of NR-EBL when thereis no noise in training examples.
出处
《软件学报》
EI
CSCD
北大核心
1996年第6期339-344,共6页
Journal of Software
关键词
解释学习
噪声
模式识别
算法
人工智能
Explanation based learning, noisy data, pattern recognition.