摘要
参数化设计技术是当代CAD技术的核心.作为该技术基础的几何约束系统的建模与求解,要求对约束进行方便、有效的管理.为此,本文基于自由度分析、图论、稀疏矩阵及非线性方程等理论,提出了几何约束最大归约理论,实现了几何约束系统的最大分解,并以归约树的形式清晰地表达了系统内在的串、并、耦合机制,并成功地应用于参数化绘图系统中至关重要的约束一致性检查。
arametric design is the core of the current CAD technology. The way tomanage the constraints conveniently and efficiently is required by the procedures to modeland solve the geometric constraint system which is the base of parametric design. A newmethod called as MRA(maximal reduction algorithm) is presented in this paper. It owesto the application about analysis of degree of freedom, graph theory and sparse matrix theory. The MRA is very effective for geometric constraint consistency checking, maximaldecomposition of geometric constraint system and constraint management. It is worth thatthe MRA express the serial, parallel and coupling mechanism of constraint propagationwith reducing tree.
出处
《软件学报》
EI
CSCD
北大核心
1996年第7期394-400,共7页
Journal of Software
关键词
参数化绘图
自由度分析
约束管理
CAD
Parametric drawing, analysis of degree of freedom, constraint management,reduction.