摘要
本文给出了n(n≥3)维欧氏空间En上非奇异线性变换F依赖于任意给定的P(1≤P≤n—2)个正交方向的分解,进而证明了F依赖于上述P个正交方向的n(q=n—P)个准主向的存在.作为上述结果的应用,我们推导出了处于均匀变形的物体中任意平面内至少存在两个互相正交的应变主方向,以及该物体内应变能密度在上述线性变换的任意一个准主基下可表为5个实数的函数.
In this paper, we give a decomposition depending on p(1≤p≤n-2) or thonormal directions assigned for non singular linear transformation F on a n-dimens ion (n≥3) Euclidean space En and then prove that there exist q(q= n-p)quasiprincipal directions for F depending on the preceding p orthonormal directions.As applicance of the preceding result, we derive that there exist at least two orthonormal principal directions of strain in arbitrary plane of body which is in homogeneous deformation, and strain energy density is function of 5 real numbers under arbitrary quasi-principal base for the preceding non singular linear transformation.
出处
《应用数学和力学》
CSCD
北大核心
1996年第8期743-748,共6页
Applied Mathematics and Mechanics
关键词
线性变换
分解
欧氏空间
应变能密度
变形
non singular, linear transformation, quasi-principal directions, decomposition