摘要
当微分方程中含有微量项时,可用M.E.Shvez迭代法求解.但当微量项出现奇性,或在某一区间内微量项并非微量时.用此法求解将遇到困难.本文针对这类问题,把原M.E.Shvez迭代解法稍加改变.算例表明,用改进了的M.E.Shvez法求解上述问题.其精度比原M.E.Shvez法的有所提高.
Where there is contained small guantity tenned in differential equation, wemay solve it by using the M. E. Shvez iterative method.If the small quantity term has singularity. or in the certian region, thesmall quantity term is not small, using this mthod to solve such differntialequation, we may meet difficulties. In this paper, the author improves the M.E. Shvez method. Several examples are given to demonstrate foe algorithm.
出处
《应用数学和力学》
CSCD
北大核心
1996年第7期661-666,共6页
Applied Mathematics and Mechanics
关键词
迭代法
力学
Shvez迭代法
微分方程
奇摄动
iterative method, singular perturbation method, earth-moon-spaceship problem