摘要
针对BP神经网络中采用的梯度下降法局部搜索能力强、全局搜索能力差和遗传神经网络中采用的遗传算法全局搜索能力强、局部搜索能力差的特点,提出了一种集梯度下降法和遗传算法优点为一体的混合智能学习法(HybridIntelligencelearningalgorithm),简称HI算法,并将其应用到优化多层前馈型神经网络连接权问题。对该算法进行了设计和实现,从理论和实际两方面证明混合智能学习法神经网络与BP神经网络和基于遗传算法的神经网络相比有更好的运算性能、更快的收敛速度和更高的精度。
To describe the advantage and shortcoming of gradient descent algorithm and genetic algorithm for training connection weights of neural networks, a new algorithm combined genetic algorithm with gradient descent algorithm was proposed, referred as to Hybrid Intelligence learning algorithm(HI). Applied to the problem of optimizing the connection weight of the feedforward neural networks, the algorithm was feasible. The design and realization of HI was introduced. And it was proved that hybrid intelligence learning algorithm is better, faster and more accurate than gradient descent algorithm and genetic algorithm in theory and practice.
出处
《计算机应用》
CSCD
北大核心
2005年第12期2789-2791,共3页
journal of Computer Applications
关键词
遗传算法
遗传神经网络
人工神经网络
BP神经网络
梯度下降法
混合智能学习法
Genetic Algorithms (GA)
GA neural networks
artificial neural networks
BP neural network
gradient descent algorithm
HI algorithms( Hybrid Intelligence learning algorithm)