期刊文献+

改善遗传神经网络收敛性的研究 被引量:1

Study on improving the convergence of genetic neural networks
下载PDF
导出
摘要 针对BP神经网络中采用的梯度下降法局部搜索能力强、全局搜索能力差和遗传神经网络中采用的遗传算法全局搜索能力强、局部搜索能力差的特点,提出了一种集梯度下降法和遗传算法优点为一体的混合智能学习法(HybridIntelligencelearningalgorithm),简称HI算法,并将其应用到优化多层前馈型神经网络连接权问题。对该算法进行了设计和实现,从理论和实际两方面证明混合智能学习法神经网络与BP神经网络和基于遗传算法的神经网络相比有更好的运算性能、更快的收敛速度和更高的精度。 To describe the advantage and shortcoming of gradient descent algorithm and genetic algorithm for training connection weights of neural networks, a new algorithm combined genetic algorithm with gradient descent algorithm was proposed, referred as to Hybrid Intelligence learning algorithm(HI). Applied to the problem of optimizing the connection weight of the feedforward neural networks, the algorithm was feasible. The design and realization of HI was introduced. And it was proved that hybrid intelligence learning algorithm is better, faster and more accurate than gradient descent algorithm and genetic algorithm in theory and practice.
出处 《计算机应用》 CSCD 北大核心 2005年第12期2789-2791,共3页 journal of Computer Applications
关键词 遗传算法 遗传神经网络 人工神经网络 BP神经网络 梯度下降法 混合智能学习法 Genetic Algorithms (GA) GA neural networks artificial neural networks BP neural network gradient descent algorithm HI algorithms( Hybrid Intelligence learning algorithm)
  • 相关文献

参考文献7

  • 1FOGEL DB.An information criterion for optimal neural network selection[J/OL]. IEEE Transactions On Neural Networks,1991,2:490-497.
  • 2刘勇 康立山.非数值并行计算(2册)-遗传算法[M].北京:科学出版社,1995..
  • 3YAO X.Evolutionary artificial neural networks[J/OL]. International Journal of Neural Systems,1993,4(3):203-222.
  • 4KITANO H.Designing neural networks using genetic algorithms with graph generation system[J/OL].Complex Systems, 1990,4:461-476.
  • 5WHITLEY D,STARKWEATHER T,BOGART C.Genetic algo-rithms and neural networks: optimizing connections and connectivity[J/OL]. Paraallel Computin,1990,14:347-361.
  • 6YAO X.The evolution of connectionist networks[J/OL]. In T. Dartnall, editor,Artificial Intelligence and Creativity, Kluwer Academic Publishers, Dordrecht,1994:233-243.
  • 7HORNIK K,STINCHICOMBE M,WHITE H.Multilayer feedforward networks are universal approximators[J/OL].Neural Networks,1998,2:359-366.

同被引文献11

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部