期刊文献+

基于最小二乘增量迭代正则化方法的图像复原 被引量:4

Image restoration based on least-squares increment iterative and regularization method
下载PDF
导出
摘要 针对模糊图像的复原问题,从最小二乘算法出发,采用增量迭代的方法改善算法的收敛性,同时结合正则化技术克服问题的病态性质,研究了一种有效的图像复原方法。在运算中,采用最速下降法求解方程,并运用快速傅立叶变换(FFT)原理来减少计算复杂度,同时引入自适应的正则化参数,使其与图像复原的迭代运算同步进行并自动修正到最优值。计算机仿真结果表明,该方法可较好地再现原图像的重要信息,复原图像在峰值信噪比和主观视觉效果方面都有明显的提高。 Aiming at the restoration of blurred image, an effective restoration approach based on least-square algorithm was proposed. This method adopted increment iterative algorithm to improve convergence and meanwhile applied regularization technique to overcome ill-posed problem. In the computations, the equation was solved by steepest descend algorithm, and the complexity was reduced by FFT principal, meanwhile, the regularization parameter has its adaptive character, which can be determined in terms of the restored image at each iteration step therefore automatically correct to the appropriate value. Computer simulations show that the proposed method can properly retrieve the main information of original image, and the PSNR (peak signal to noise ratio) and subjective visual effect of the restored image are improved significantly.
出处 《计算机应用》 CSCD 北大核心 2005年第12期2827-2829,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(60272013) 全国优秀博士论文作者专项基金资助项目(200140) 国防预研基金资助项目(51421030901KG01)
关键词 图像复原 最小二乘 增量迭代 正则化 image restoration least-squares increment iterative regularization
  • 相关文献

参考文献7

  • 1KATSAGGELOS AK.Digital Image Restoration[M]. Berlin, Germany: Springer-Verlag, 1991.
  • 2MESAROVIC VZ,GALATSANOS NP, KATSAGGELOS AK. Regularized Constrained Total Least Squares Image Restoration[J]. IEEE Transactions on Image Processing, 1995,4(8): 1096-1108.
  • 3周杰,陈明,陈武凡.RCTLS图像恢复中局部线化的优化算法以及正则化参数的自适应选择[J].计算机学报,1998,21(S1):341-346. 被引量:2
  • 4VAN KENMPEN GMP,VAN VLIET LJ.The influence of the regularization parameter and the first estimate on the performance of Tikhonov regularized non-linear image restoration algorithms[J]. Journal of Microscopy,2000,198(1):63-75.
  • 5KANG MG, AGGELOS K.General Choice of the Regularization Functional in Regularized Image Restoration[J]. IEEE Transactions on Image Processing, 1995,4(5): 594-602.
  • 6CHEN WF,CHEN M,ZHOU J.Adaptively Regularized Constrained Total Least-Squares Image Restoration[J]. IEEE Transactions on Image Processing, 2000,9(4): 588-596.
  • 7陈武凡,李超,陈和晏.空域中退化图像恢复的有效算法[J].计算机学报,1999,22(12):1267-1271. 被引量:19

二级参考文献5

  • 1周杰,计算机学报,1998年,21卷,增刊,341页
  • 2Kang M G,IEEE Trans Image Processing,1997年,6卷,5期,774页
  • 3Kang M G,IEEE Trans Image Processing,1995年,4卷,5期,594页
  • 4陈武凡,国防科技大学学报,1987年,1卷,10页
  • 5Chen W,IEEE Trans Image Processing

共引文献19

同被引文献32

  • 1黄飞,金伟其,曹峰梅,刘伯丰.相向运动条件下图像的辐射状退化及其复原研究[J].电子学报,2005,33(9):1710-1713. 被引量:7
  • 2于勇,付忠良.相向运动径向模糊图像的复原算法研究[J].计算机应用,2007,27(1):174-176. 被引量:5
  • 3钱春强,王继成.基于改进约束最小二乘方法的图像复原算法[J].计算机技术与发展,2007,17(6):9-11. 被引量:8
  • 4冈萨雷斯等著.阮秋琦等译.数字图像处理[M].北京:电子工业出版社,2007,8.
  • 5KATSAGGELOS AK. Digital Image Restoration [M]. Berlin, Germany:Springer--Verlag,1991.
  • 6冈萨雷斯Rc.数字图像处理[M].2版.阮秋琦,阮宇智,译.北京:电子工业出版社,2007.
  • 7吉亚列.矩阵数值分析与最优化[M].北京:高等教育出版社,1990.
  • 8You Yu-Li,Kaveh M.Fourth-order partial differential equations for noise removal[J].IEEE Transactions on Image Processing,2000,9(10):1723-1730.
  • 9Chen W F,Chen M,Zhou J.Adaptively regularized constrained total least-squares image restoration[J].IEEE Transactions on Image Processing,2000,9 (4):588-596.
  • 10Webster C B, Reeves S J. Radial Deblurring with FITs [ C ]//Proceedings of IEEE Conference on Image Processing. San Antonio: IEEE Computer Socitety, 2007: 101-104.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部