期刊文献+

基于H_∞和Youla参数化的结构误差范围分析

Structural perturbations boundary analysis based on H_∞and Youla parametrization
下载PDF
导出
摘要 为了探讨被控对象的结构误差范围,简化调节PID参数过程,利用H∞和Youla参数化理论,给出了当控制器使标称模型稳定而标称模型存在结构误差的情况下,控制器仍然可以使摄动对象也稳定时的结构误差范围的计算方法,计算了被控对象分别是单变量系统和多变量系统时,结构误差的范围。仿真结果验证了该计算方法的可行性。这种方法给工程人员提供了一个设计PID控制器的定量指标,简化了调节PID参数的过程。 In order to explore the structural perturbations boundary of object and simplify the process of adjusting the PID parameters, the structured perturbations boundary is determined when a controller can make a nominal object stable and also make the perturbations object with Structural perturbations stable via the theory of H∞ and Youla parametrization. Moreover, the structural perturbations boundary is calculated when the object is single - variable or multi - variable. The simulation has verified the flexibility of this method. This method can give the engineers a quantitative index when designing the PID controller, and this simplifies the process of adjusting the PID parameters.
出处 《电机与控制学报》 EI CSCD 北大核心 2005年第6期600-602,606,共4页 Electric Machines and Control
关键词 结构误差 YOULA参数化 PID H∞ structured perturbations Youla Parametrization PID H∞
  • 相关文献

参考文献8

  • 1王树青.先进控制技术及应用[M].北京:化学工业出版社,2002..
  • 2陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002..
  • 3褚建.鲁棒控制理论及应用[M].北京:国防工业出版社,2001..
  • 4ZAMES G. Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate invers[J]. IEEE Trans. Automat. Control, 1981 ,AC -26(2): 301 -320.
  • 5BRIAN D O Anderson. From youla - kucera to identification, adaptive and nonlinear control [ J ]. Automatica, 1998, 34 ( 12 ):1485 - 1506.
  • 6YOULA D C Jabri, BONGIORNO J J. Modem wiener - hopf design of optimal controllers. Ⅱ. the multivariable case [ J ]. IEEE Trans. Automat. Control, 1976, AC -21(1) :319 -338.
  • 7TRYPHON T Georgiou, MALCOLM C Smith. Optimal robustness in the gap metric [ J ]. IEEE Transactions on Automatic Control,1990, 35(6) :673 -686.
  • 8高黛陵 吴麒编.多变量频域控制理论[M].北京:清华大学出版社,1998..

共引文献425

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部