摘要
本文推广了R.A.Smith,M.V.Subbarao和G.Nowak所考虑的一个除数问题.令S={(ai,qi)|ai≤qi}(r≥3).定义d(n;S)=Σ(1)1,Σ(1)表示对满足n=m1…mr,mj≡aj(modqj),j=1,2,…,r的诸mj求和.我们求出了Σn≤xd(n;S)的渐近公式,并得到了余项估计.
In this paper, we generalize a divisor problem which was considered by R. A. Smith, M. V. Subbarao and G. Nowak. Suppose r ≥3 and S = {(ai,qi)|ai≤ qi,i=1, 2,…,r}. Define d(n; S) =Σ(1) 1, where Σ(1) denotes the summation for all mi such that n = m1m2…mr, mr = aj(modqj),j = 1, 2,…, r. An asymptotic formula for Σn≤x d(n;S) and an estimation to the error term are obtained.
出处
《数学进展》
CSCD
北大核心
1996年第3期243-249,共7页
Advances in Mathematics(China)
关键词
除数问题
算术序列
余项估计
渐近公式
divisor problem
arithmetic progression
error term estimation
Lindelof hypothesis
asymptotic formula