摘要
设R为环,t是左R-模范畴的一个遗传挠理论.文中证明了下述各点等价:(1)每个内射左R-模是t-平坦的;(2)每个t-有限表现左R-模的内射包络是t-平坦的;(3)每个t-有限表现左R-模是自由R-模的子模;(4)每个t-有限表现左R-模是自反的且其对偶模是H-有限生成的.
Let R be a ring with identity and t be the torsion radical relative to an hereditary torsion theory for the category of left R-modules. It is shown that the following statements are equivalent:(1) Every injective left R-module is t-fiat,(2) the injective hull of every t-finitely presented left R-module is t-flat,(3) every t-finitely presented left R-module is a submodule of a free R-module,(4) every t-finitely presented left R-module is reflexive and its dual module is H-FG.
出处
《数学进展》
CSCD
北大核心
1996年第3期263-269,共7页
Advances in Mathematics(China)