摘要
设是在一个单连通区域上的单叶调和映照,我们证明了反函数z=f-1()也是调和映照的充要条件是f为下面三类函数之一:(i)单叶共形映照;(ii)仿射交换映照;(iii)具有形式f(z)=A[az+β+log(1-e-az-β)-log(1-e-az-β)]+B的调和映照,其中A,B,α和β是常数且满足条件R(az+β)>0,Z∈D.
Let f(z) = h(z) + g(z) be harmonic univalent in a simply connected domain D C. It is proved that the inverse mapping Z = f-1(W) is also harmonic if and only if f is any one of the following three kinds of fUnctions: (i) one-to-one conformal mapping; (ii) affine transformation; (iii) function of the form where A, B, α and βare constants with the later two subject to the condition R(az+β) > 0, z ∈ D.
出处
《数学进展》
CSCD
北大核心
1996年第3期270-276,共7页
Advances in Mathematics(China)
关键词
调和函数
单叶函数
共形映照
调和映照
反函数
harmonic functions
univalent functions
conformal mapping
affine tranformation