摘要
设F是可解的,子群闭的,由{f(P)}所局部定义的群系,Fp是由{f(q)}定义的p-局部定义群系.N为幂零群系.本文证明了:1)设F满足:任一群属于F,当且仅当,对每p.其p-Sylow-正规化子属于Fp.于是“群G∈N.F(幂零由F的扩张)的充要条件是,对每P,其p-Sylow-正规化子的Fp剩余次正规于G内.2)群G为超可解的充要条件是,对每p,其p-Sylow-正规化子为p-超可解,且其幂零剩余次正规于G内.若对每p,群G的p-Sylow子群无商群与p2-次对称群的p-Sylow子群同构,则称G为B-群.3)设G为B-群,又群系F含于σ-Sylow塔群系内.于是①G∈F,当且仅当,对每p,G的p-Sylow-正规化属于Fp;②G∈N·F,当且仅当,对每p,G的p-Sylow-正规化子的Fp剩余在G内次正规.
Suppose that F is a solvable and subgroups closed formation locally defined by{f(p)}. Fp is the formation locally defined byThe principal results of this paper as follow:1) If F holds that a group belongs to f when and only when for every prime p whosep-Sylow-normalizers belong in Fp, then a group G ∈ N. F (extentions of a nilpotent group bya F-group) when and only when for every prime p the Fp-residues of p-Sylow-normalizers aresubnormal in G.2) A group G is supersolvable when and only when for every prime p the p-Sylow-normalizersare supersolvable and whose nilpotent residues are subnormal in G.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1996年第4期456-459,共4页
Acta Mathematica Sinica:Chinese Series
关键词
正规化子
超可解群
有限群
SYLOW子群
Locally defined formations
Sylow-normalizers, Supersolvable groups, σ-Sylow tower