期刊文献+

线性时不变系统集员辨识的区间算法 被引量:5

INTERVAL ALGORITHM FOR MEMBERSHIP-SET IDENTIFICATION OF LINEAR TIME-INVARIANT SYSTEM
下载PDF
导出
摘要 在不确定但有界(UBB)噪声假设下,提出一种针对线性时不变系统参数集员辨识的区间算法.借助区间数学,寻求与观测数据和噪声相容的参数的最小超长方体(或区间向量),推导了递推列式,并分析了算法的收敛性.此算法不仅可以给出参数估计值,还可以给出参数的不确定性界限.通过数值算例,将此算法与Fogel 椭球算法和最小二乘算法进行了比较,显示了其计算量小和精度高的优点. Based on the assumption of Unknown-But-Bounded (UBB) noise, an interval algorithm is presented for parameter membership-set estimation of a linear time-invariant system. In virtue of interval mathematics, the algorithm objective is to seek the minimal hyper-rectangle (or interval vector) of parameters which is compatible with the measurements and the bounded noise, and its recursive formula are derived. Convergence of the algorithm is analyzed. The presented algorithm can obtain not only the center estimations of parameters, but also the uncertain bounds on them. Numerical examples illustrate its small computation efforts and higher accuracy in comparison with Fogel's algorithm and the least squares algorithm.
出处 《力学学报》 EI CSCD 北大核心 2005年第6期713-718,共6页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家杰出青年科学基金项目(10425208)国家自然科学基金委与中国工程物理研究院联合基金项目(10376002)北京航空航天大学博士创新基金项目资助.~~
关键词 集员辨识 线性时不变系统 区间算法 区间数学 不确定但有界(UBB) membership-set identification, linear time-invariant system, interval algorithm, interval mathematics, UBB
  • 相关文献

参考文献13

  • 1Eykhoff P. System Identification-Parameter and State Estimation. New York: Wiley, 1974.
  • 2Goodwin GC, Payne RL. Dynamic System Identification.New York: Academic, 1977.
  • 3Ljung L. System Identification: Theory for the User. Beijing: Tsinghua University Press, 2002.
  • 4Fogel E. System identification via membership set constraints with energy constrained noise. IEEE Transactions on Automatic Control, 1979, AC-24:752~758.
  • 5Fogel E, Huang YF. On the value of information in system identification-bounded noise case. Automatica, 1982,18(2): 229~238.
  • 6Milanese M, Belforte G. Estimation theory and uncertainty intervals evaluation in present of unknown but bounded errors: Linear families of models and estimators.IEEE Transactions on Automatic Control, 1982, AC-27:408~414.
  • 7Cerone V. Feasible parameter set for linear models with bounded errors in all variables. Automatica, 1993, 29(6):1551~1555.
  • 8岳振军.集员辨识的次最优输入设计[J].解放军理工大学学报(自然科学版),2001,2(2):96-98. 被引量:3
  • 9Sun XF, Zhang HY, Fan YZ. Recursive dual-linearprogramming approach for parameter-uncertainty-interval estimation. IEEE Proceedings-Control Theory and Applications, 2003, 150(3): 303~310.
  • 10孙先仿,滕继涛,范跃祖.参数不定区间估计的对偶线性规划方法[J].北京航空航天大学学报,2003,29(6):529-533. 被引量:3

二级参考文献9

  • 1王书宁,黄学俊,戴建设.线性模型参数l_∞和l_1中心估计量的统一求法[J].自动化学报,1996,22(3):353-356. 被引量:2
  • 2Ljung L. System identification: theory for user[M]. Second edition.Prentice Hall, 1999.
  • 3Milanese M, Belforte G. Estimation theory and uncertainty intervals evaluation in presence of unknown but bounded errors: linear families of models and estimators[J]. IEEE Trans Autom Control, 1982,27(2) :408 - 414.
  • 4Fang S C, Puthenpura S. Linear optimization and extensions: theory and algorithms[M]. Prentice Hall Inc, 1993.
  • 5Barrodale I, Roberts F D K. An improved algorithm for discrete L1 linear approximation[J]. SIAM J Numer Anal, 1973, 5:839 - 848.
  • 6Tzes A, Hu Q, Le K. Development of a recursive algorithm for parameter uncertainty interval estimation [ A ]. Proceedings of 34th IEEE Conf. Decision and Control[C]. New Orleans: IEEE, 1995.3010 - 3015.
  • 7FOGEL E, HUANG Y F. On the value of information in system identification--bound noise case[J]. Automatic, 1982,18(2): 229-238.
  • 8GOODWIN G C,PAYNE R L. Dynamic system identification-experiment design and data analysis[M]. Academic Press, 1977.
  • 9DELLER J P. Set membership identification in digital signal processing[J]. IEEE ASSP magazine, 1989, 6 (4):4-20.

共引文献3

同被引文献80

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部