摘要
研究一端固定一端自由Euler弹性杆在集中外力作用下的变形规律.根据变形弹性杆的几何特征和力学平衡条件,通过建立其变形的动力学模型和运动学模型,进而讨论模型的数值解、变形杆的形状以及相关的多解性和分岔.
The gripper structure and spring system in practical technology are abstracted as deformed elamped-free elastie rod. The motion equation of deformations of Euler elastie rod is established, aeeording to the geometrie form and the balanee eonditions of meehanies. The solutions of the mathematieal model, the form of the deformed elastie rod as well as the related multiplieity and the bifurcation of the solutions are obtained.
出处
《中央民族大学学报(自然科学版)》
2005年第4期293-296,318,共5页
Journal of Minzu University of China(Natural Sciences Edition)
基金
北京市自然科学基金项目(项目号:1042007)
关键词
弹性变形
摆方程
相轨线
多解性与分支
elastic deformation
pendulum equation
phase orbit
multiplicity and bifurcation