期刊文献+

DWT Lifting分解理论及其在图像压缩中的应用

Lifting Factorization Theory of DWT and Its Application to Image Compression
下载PDF
导出
摘要 在形式化地分析DWT(Discrete Wavelet Transform)Lifting分解的基础上,提出了分解集合的分级结构概念与技术,其克服了求解问题的高复杂性所带来的实际计算与搜索困难;进一步地,从数值稳定性及计算代价两方面研究了分解的评价问题,给出了两种实用的分解稳定性准则;最后,结合分级结构技术提出了最优分解算法.这些方法应用在JPEG2000框架下的图像压缩系统中得到了一些深刻结论,如发现了LTD(Long Then Danger)现象等,可以为压缩系统中小波变换的快速实现提供新的理论依据与实用算法.实验结果表明了上述方法在求解效率与灵活性、寻优速度以及适用范围等方面的优越性. This paper deals with lifting factorizations of DWTs(discrete wavelet transforms). Firstly, definitions of several operators for Laurent polynomial division are given, and the GCD(greatest common divisor)solving process of the Euclidean algorithm is formulized and analyzed in details, based on which, a so-called multi-lewel structurization technology is developed so as to overcome the difficulties, due to exponential size of the whole set, in computing and searching factorizations. Secondly, the problem of how to evaluate a certain lifting factorization is investigated in terms of both numerical stability and computational cost, wherein authors present two practical stability measures. Thirdly, an algorithm for finding high performance factorizations is designed by combining the multi-level structurization method and a evaluation rule. Fourthly, authors discuss compression performance difference of factorizations in JPEG2000 framework, which results in the finding of a phenomenon named LTD(long then danger), i.e., the longer the wavelet filters are, the more dangerous to choose one factorization for image compression it is. Lastly, a serial of experiments are conducted on both orthogonal and bi-orthogonal wavelet transforms of arbitrary length. The experimental results show that the methods proposed in this paper, compared with the known ones, obtain considerable improvements in efficiency and flexibility of solving, time for optimization, and application range.
出处 《计算机学报》 EI CSCD 北大核心 2005年第11期1831-1842,共12页 Chinese Journal of Computers
基金 国家自然科学基金(60475011 60075010)资助
关键词 DWT Lifting分解 优化 图像压缩 JPEG2000 DWT lifting factorization optimization image compression JPEG2000
  • 相关文献

参考文献14

  • 1Sweldens W.. The lifting scheme: A construction of second generation wavelets. SIAM Journal on Mathematical Analysis, 1997, 29(2): 511~546
  • 2Sweldens W.. The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis, 1996,3 (2): 186~200
  • 3Daubechies I.,Sweldens W..Factoring wavelet transforms into lifting steps. Journal of Fourier Analysis and Applications, 1998, 4(3): 247~269
  • 4Calderbank A.R., Daubechies I., Sweldens W., Yeo B.L.. Wavelet transforms that map integers to integers. Applied and Computational Harmonic Analysis, 1998, 5(3): 332~369
  • 5Goh S.S., Jiang Q.T., Xia T.. Construction of biorthogonal multiwavelets using the lifting scheme. Applied and Computational Harmonic Analysis, 2000, 9(3): 336~352
  • 6Adams M.D., Kossentini F.. Reversible integer-to-integer wavelet transforms for image compression: Performance evaluation and analysis. IEEE Transactions on Image Processing, 2000, 9(6): 1010~1024
  • 7ISO/IEC FCD15444-1:Information technology--JPEG 2000 image coding system--Part I:Core coding system, 2000
  • 8Movva S., Srinivasan S.. A novel architecture for lifting-based discrete wavelet transform for JPEG2000 standard suitable for VLSI implementation.In:Proceedings of the 16th IEEE International Conference on VLSI Design, New Delhi, India, 2003, 202~207
  • 9Maslen M.,Abbott P..Automation of the lifting factorization of wavelet transforms. Computer Physics Communications, 2000, 127: 309~326
  • 10Grangetto M., Magli E., Martina M., Olmo G..Optimization and implementation of the integer wavelet transform for image coding. IEEE Transactions on Image Processing, 2002, 11(6): 596~604

二级参考文献8

  • 1W Sweldens.The lifting scheme:A construction of second generation wavelets[J].SIAM Journal on Mathematical Analysis,1997,29(2):511-546.
  • 2W Sweldens.The lifting scheme:A custom-design construction of biorthogonal wavelets[J].Applied and Computational Harmonic Analysis,1996,3(2):186-200.
  • 3I Daubechies,W Sweldens.Factoring wavelet transforms into lifting steps[J].Journal of Fourier Analysis and Applications,1998,4(3):247-269.
  • 4A R Calderbank,I Daubechies,W Sweldens,B L Yeo.Wavelet transforms that map integers to integers[J].Applied and Computational Harmonic Analysis,1998,5:332-369.
  • 5G Piella,H J A M Heijmans.Adaptive lifting schemes with perfect reconstruction[J].IEEE Transactions on Signal Processing,2002,50(7):1620-1630.
  • 6S Movva,S Srinivasan.A novel architecture for lifting-based discrete wavelet transform for JPEG2000 standard suitable for VLSI implementation[A].IEEE Proceedings of the 16th International Conference on VLSI Design[C].New Delhi,India:IEEE Computer Society
  • 7M Maslen,P Abbott.Automation of the lifting factorisation of wavelet transforms[J].Computer Physics Communications,2000,127:309-326.
  • 8G H Golub,C F Van Loan.Matrix Computations[M].Third edition,Baltimore,Maryland:Johns Hopkins University Press,1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部