期刊文献+

模糊粗糙数据模型:一种数据分析的新方法 被引量:7

Fuzzy Rough Data Model: A New Technique for Analyzing Data
下载PDF
导出
摘要 提出了一种数据分析的新方法———模糊粗糙数据模型(Fuzzy Rough Data Model,FRDM).该方法采用动态自适应模糊聚类技术,将Kowalczyk方法中的粗糙数据模型(Rough Data Model,RDM)对输入数据空间的网格状“硬划分”转化为模糊划分,辨识输入数据空间中的模糊模式类,并通过定义各模糊模式类与决策类别之间的类型映射关系ftype:Ci→y,以及输入数据对各模式类分类规则的匹配度(Degree of Fulfillment,DoF(x))概念,建立起相应的FRDM模型.不同数据集的实验测试结果表明,与Kowalczyk的RDM方法相比,文中方法具有更好的数据概括能力、更强的噪声数据处理能力和更高的搜索效率. A new technique for analyzing data, fuzzy rough data model, FRDM, is proposed. By means of the dynamic adaptive fuzzy clustering techniques, the approach turn the grid hard partition of input data space in Kowalczyk's rough data model (KRDM) to the fuzzy partition, and identify the fuzzy pattern clusters of input data space. Then, the FRDM is built through utilizing the definition of type mapping relation ftype. Ci→y from each fuzzy pattern clusters to the decision categories as well as the concept DoF(x), which is the degree of fulfillment of an input data relative to the classification rules for the pattern clusters. Finally, different experimental databases are calculated and the results demonstrate that above approach has better generalization ability, more powerful ability to handle data contaminated by noise and higher searching efficiency compared with the Kowalczyk's RDM.
出处 《计算机学报》 EI CSCD 北大核心 2005年第11期1866-1874,共9页 Chinese Journal of Computers
基金 国家"九七三"重点基础研究发展规划项目基金(2002cb312200-01) 黑龙江省自然科学基金(F0316) 中国博士后科学基金(2004036321))资助
关键词 粗糙集 粗糙数据模型 模糊聚类 数据挖掘 模糊粗糙数据模型 rough set rough data model fuzzy clustering data mining fuzzy rough data model
  • 相关文献

参考文献15

  • 1Pawlak Z.. Rough sets. International Journal of Computer and Information Sciences, 1982, 11(5): 341~356
  • 2Pawlak Z.. Rough Set: Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer Academic Publishers, 1991
  • 3Pawlak Z.. Rough set theory and its applications to data analysis. International Journal of Cybernetics and Systems, 1998, 29(7): 661~688
  • 4Ziarko W.. Variable precision rough sets model. Journal of Computer System Science, 1993, 46 (1): 39~59
  • 5Kowalczyk W.. Rough data modeling: A new technique for analyzing data. In: Polkowski L., Skowron A. eds.. Rough Sets in Knowledge Discovery 1: Methodology and Applications. Heidelberg: Physica-Verlag, 1998, 400~421
  • 6Kowalczyk W.. Analyzing temporal patterns with rough sets. In: Proceedings of the 4th European Congress on Intelligent Techniques and Soft Computing (EUFIT'96), Aachen, Germany, 1996, 139~143
  • 7Skowron A., Rauszer C.. The discernibility matrices and functions in information systems. In: Slowinski R. ed. Intelligent Decision Support-Handbook of Applications and Advances of the rough Sets Theory. Dordrecht: Kluwer Academic Publishers, 1992, 331~362
  • 8Pal S.K., Skowron A.. Rough-Fuzzy Hybridization: A New Trend in Decision-Making. Singapore: Springer-Verlag, 1999
  • 9Inuiguchi M.. Generalizations of rough sets: From crisp to fuzzy cases. In: Tsumoto S., Slowinski R., Komorowski H.J., Grzymala-Busse J.W. eds.. Rough Sets and Current Trends in Computing. Lecture Notes in Artificial Intelligence 3066, Berlin, Heidelberg: Springer-Verlag, 2004, 26~37
  • 10Gustafson D.E., Kessel W.C.. Fuzzy clustering with a fuzzy covariance matrix. In: Proceedings of the IEEE CDC, San Diego, CA, 1979, 761~766

同被引文献95

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部