期刊文献+

单周期模糊递增时变需求库存模型 被引量:1

A single-period inventory model in terms of fuzzy increasing time-varying demand
下载PDF
导出
摘要 时变需求库存模型的基本假设是由所处的经济环境是确定的,但是现实环境通常是不确定的;文章放松这一假定,将随时间递增的需求函数改写为模糊递增需求函数,研究单周期模糊递增时变需求库存问题,并建立相应的数学模型;利用一种模糊数的排序法寻求最优订购量,并给出应用实例。 The basic assumption of the inventory model with the time-varying demand is that the eco- nomic environment is deterministic. However ,the real environment is often uncertain. On the basis of relaxing the assumption, the increasing time-varying demand function is replaced by the fuzzy one. The single-period fuzzy inventory problem is discussed in consideration of the fuzzy increasing time- varying demand and the mathematic model is established. A method for ranking fuzzy numbers is applied to finding the optimal order quantity and the corresponding numerical examples are also given.
作者 赵明 周永务
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第11期1408-1412,共5页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(704710045)
关键词 时变需求 模糊递增时变需求 三角形模糊数 α-截集 time-varying demand fuzzy increasing time-varying demand triangular fuzzy number α-level set
  • 相关文献

参考文献10

  • 1Henery R J. Inventory replenishment policy for increasing demand [J]. Journal of Operational Research Society, 1979,30:611-617.
  • 2Goyal S K. Deterministic economic replenishment intervals for linear trend in demand[J]. International Journal of Production Economics, 1994 , 34: 115 - 117.
  • 3周永务,杨善林.可变定货费用情形下变质性物品经济批量问题[J].系统工程与电子技术,2000,22(12):36-40. 被引量:5
  • 4Wang S P. On inventory replenishment with non-linear increasing demand [J]. Computers & Operations Research,2002,29:1819-1825.
  • 5Roy T K,Maiti M. A fuzzy EOQ model with demand-de-pendent unit cost under limited storage capacity[J]. European J Operational Research, 1997, 99 : 425-432.
  • 6Chang S C,Yao J S. Economic reorder point for fuzzy backorder quantity[J]. European J Operational Research, 1998,109:183-202.
  • 7Lee H M,Yao J S. Economic order quantity in fuzzy sense for inventory without backorder model [J]. Fuzzy Sets and Systems, 1999,105:13-31.
  • 8Yao J S, Lee H M. Fuzzy inventory with or without backorder for fuzzy order quantity with trapezoidal fuzzy number[J]. Fuzzy Sets and Systems, 1999,105: 311 - 337.
  • 9Yager R R. A procedure for ordering fuzzy subsets of the unit interval[J]. Information Science, 1981,24:143-161.
  • 10Wu H C. The fuzzy Riemann integral and its numerical integration[J]. Fuzzy Sets and Systems, 2000,110:1 - 25.

二级参考文献2

  • 1Zhou Y W,J Syst Sci Syst Eng,1996年,5卷,147页
  • 2Teng T T,J Operational Research Society,1994年,45卷,639页

共引文献4

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部