期刊文献+

关于微分-代数系统的Runge-Kutta迭代方法的研究 被引量:2

Research on Iterative Runge-Kutta Methods for DAEs
下载PDF
导出
摘要 为了求解非自制指标-1的微分-代数系统,我们研究基于Runge-Kutta方法的动力学迭代过程,得到相关的非线性微分-代数方程的收敛理论,这类迭代过程具有一般性和灵活性,且沿着时间域网格点可以选取不同的插值函数。 This paper investigates a few form of Runge-Kutta formulae attaching waveform relaxation methods for solving nonautonomous differential-algebraic equations of index-1. The convergence of iterative Runge-Kutta formulae is verified for differential-algebraic equations of index-1. The proposed iterative processes are very general and even allow the inclusion of different interpolation formulae along the meshes.
出处 《工程数学学报》 CSCD 北大核心 2005年第6期1070-1074,共5页 Chinese Journal of Engineering Mathematics
基金 空军资助的空军工程大学预研项目
关键词 微分-代数系统 RUNGE-KUTTA方法 动力学迭代 DAEs RK methods dynamic iteration
  • 相关文献

参考文献5

  • 1Jackiewicz Z, Kwapisz M. Convergence of waveform relaxation methods for Differential-Algebraic Systems [J]. SIAM Journal of Numerical Analysis, 1996;6:2303-2317.
  • 2Jiang Y L, Chen Richard M M, Wing O. Convergence analysis of waveform relaxation for nonlinear differential-algebraic equations of index one [J]. IEEE Trans on Circuits and Systems: Fundamental Theory and Applications, 2000;11:1639-1645.
  • 3Lelarasmee E, Ruehli A E, Sangiovanni-Vincentellli A L. The waveform relaxation method for time-domain analysis of large scale integrated circuits[J]. IEEE Trans CAD IC System, 1982;1:131-145.
  • 4Lie I, Skalin R. Relaxation-based integration by Runge-Kutta methods and its applications to the moving finite element method[A]. in: Computational Ordinary Differential Equations[C]. J R Cash, I Gladwell (eds.) 1992;357-368.
  • 5Burrage K. Parallel and Sequential Methods for Ordinary Differential Equations[M]. Oxford: Clarendon Press, 1995.

同被引文献22

  • 1李宝成,蒋耀林.关于动力学系统伪谱与扰动系统谱之间关系的研究[J].工程数学学报,2004,21(6):936-940. 被引量:1
  • 2王宇莹,赵炜,王峰.一类泛函微分代数系统的波形松弛方法[J].工程数学学报,2006,23(1):71-78. 被引量:1
  • 3孙卫,邹建华,王彤.非线性指标-3微分-代数系统的波形松弛算法的实现[J].工程数学学报,2007,24(3):539-542. 被引量:1
  • 4Chiang H D, Thorp J S. Stability regions of nonlinear dynamical systems: a constructive methodology[J]. IEEE Transactions on Automatic Control, 1989, ac-34:1229-1241.
  • 5Lee J, Chiang H D. Theory of stability region for a class of no hyperbolic dynamical systems and its application to constraint satisfaction problems[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(2): 196-209.
  • 6Zaborszky J, Huang G, Zheng B, et al. On the phase portrait of a class of large nonlinear dynamic systems such as the power system[J]. IEEE Transactions on Automatic Control, 1988, 33:4-15.
  • 7Jiang Y L, Chen R M M, Wang O, Waveform relaxation of nonlinear second-order differential equations[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2001, 48(11): 1344- 1347.
  • 8Jiang Y L, Periodic waveform relaxation solutions of nonlinear dynamic equations[J]. IEEE Applied Math- ematics and Computation, 2003, 135(2-3): 219-226.
  • 9Gander M, Ruehli A E. Optimized waveform relaxation methods for RC type circuits[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2004, 51(4): 755-768.
  • 10Praprost K L, Loparo K A. A stability theory for constrained dynamic systems with applications to electric power systems[J]. IEEE Trans on Automatic Control, 1996, 41(11): 1605-1617.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部