摘要
为了求解非自制指标-1的微分-代数系统,我们研究基于Runge-Kutta方法的动力学迭代过程,得到相关的非线性微分-代数方程的收敛理论,这类迭代过程具有一般性和灵活性,且沿着时间域网格点可以选取不同的插值函数。
This paper investigates a few form of Runge-Kutta formulae attaching waveform relaxation methods for solving nonautonomous differential-algebraic equations of index-1. The convergence of iterative Runge-Kutta formulae is verified for differential-algebraic equations of index-1. The proposed iterative processes are very general and even allow the inclusion of different interpolation formulae along the meshes.
出处
《工程数学学报》
CSCD
北大核心
2005年第6期1070-1074,共5页
Chinese Journal of Engineering Mathematics
基金
空军资助的空军工程大学预研项目