判定M-矩阵的两个新准则(英文)
Two New Criteria for M-Matrices
摘要
本文给出了矩阵非奇异性的判定准则和M-矩阵的等价表征,所得结果推广了最近的相关结论。
The new nonsingularity criteria of matrices and the equivalent representation of M-matrices are presented in this paper. The recent relevant results are extended.
出处
《工程数学学报》
CSCD
北大核心
2005年第6期1095-1099,共5页
Chinese Journal of Engineering Mathematics
基金
The National Natural Science Foundation of China(10231060).
参考文献9
-
1Brualdi R A, Mellendorf S. Regions in the complex plane containing the eigenvalues of a matrix[J]. American Mathematical Monthly, 1994;101:975-985.
-
2Hoffman A J. Gersgorin variations Ⅰ: on a theme of Pupkov and Solov'ev[J]. Linear Algebra Application,2000;304:173-177.
-
3Pupkov V A. An isolated eigenvalue of a matrix and the structure of its eigenvector[J]. USSR computational Mathematics and Mathematical physics, 1983;23:14-20.
-
4Popkov V A. Some sufficient conditions for the non-degeneracy of matrices[J]. USSR computational Mathematics and Mathematical physics, 1984;24:86-89.
-
5Solov'ev V N. A generalization of Gersgorin's theorem[J]. Mathematics USSR Izvestiya, 1984;23:545-559.
-
6Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Science[M]. Academic Press, New York, 1979.
-
7Pang Mingxian. Determinants and applications of generalized diagonal dominant matrices[J]. Mathematics Annals(Chinese), 1985;6A(3):323-330.
-
8Wen Li. On Nekrasov matrices[J]. Linear Algebra Application, 1998;281:87-96.
-
9Horn R A, Johnson C R. Matrix analysis[M]. New York, Combridge University Press, 1985.