摘要
在机器学习算法的联合稳定性条件下,利用广义McDiarmid不等式获得了排一推广误差的界。讨论了机器学习的推广能力,和类似的结果进行了比较。
Under the assumption of united stability, a bound of leave-one-out generalization error is derived by using extended versions of McDiarmid's inequality, the generalization ability of machine learning is also discussed and compared to similar results.
出处
《工程数学学报》
CSCD
北大核心
2005年第6期1121-1124,共4页
Chinese Journal of Engineering Mathematics
基金
国家自然科学基金(10371033
60403011).
关键词
学习理论
算法稳定
推广误差
差分界定
learning theory
algorithm stability
generalization error
difference-bounded