摘要
设G是满足条件D1和D2的2-连通非Hamilton赋权图,证明了如下新结果:若G满足dw(x)+dw(y)≥m(xy E(G),x≠y),则通过图G的每个顶点存在权重大于或等于m的圈.该结果推广了非赋权图的已有结果.
Under the assumption that G is a 2-connected non-Hamilton weighted graph satisfying conditions D1 and D2, a new conclusion is verified: if G satisfies d^w( x ) + d^w( y ) ≥ m( xy 不属于 E(G), x ≠ y ), through each vertex of graph G, there exist cycles with the weight equal to or greater than m. The conclusion extends Enomoto' s theorem for the unweighted graphs to the weighted graphs.
出处
《河海大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第6期721-724,共4页
Journal of Hohai University(Natural Sciences)