期刊文献+

基于AR-SVM的转子故障诊断 被引量:1

Rotation machine fault diagnosis based on AR-SVM
下载PDF
导出
摘要 将时间序列建模与支持向量机相结合并应用于转子故障诊断领域。用时间序列理论进行故障建模,可以在缺乏对实际故障机理了解的情况下从机组自身的运行过程中动态获取故障的统计特征信息1。而支持向量机作为模式识别领域的新工具,其具有小样本学习能力等显著优势2。这里首先对实验台振动信号建立时间序列模型,然后用模型参数来训练一个支持向量机作为故障诊断的分类器。实验结果表明,这种方法有很好的实用性。 A faults diagnosis method based on time series modeling and Support Vector Machine is presented. Using time series modeling, the fault pattern can still be recognized in a statistic way, even though there was little knowledge about the characteristics and features of faults. As a new tool for pattern recognition, SVM has a good performance despite of insufficient training samples. After modeling of signals collected from a simulative rotation machine, the AR(AutoRegression) coefficients were extracted as condition features and were sent to SVM as training and testing samples respectively. This method was proved to be practical and efficient by experiments on a test rig.
出处 《机械设计与制造》 北大核心 2005年第11期138-140,共3页 Machinery Design & Manufacture
基金 江西省自然科学基金(0450017) 华东交通大学校立课题资助项目(部分)
关键词 时间序列 故障诊断 支持向量机 SVM Time series Fault diagnosis Support vector machine SVM
  • 相关文献

参考文献8

  • 1方泽南,傅尚新,张勇.时间序列在故障诊断中的应用[J].清华大学学报(自然科学版),1998,38(9):123-126. 被引量:25
  • 2Vapnik V N. The Nature of Statistical Learning Theory[M]. NewYork:Spring - Verlage, 1995.
  • 3李凌均,张周锁,何正嘉.基于支持向量机的机械故障智能分类研究[J].小型微型计算机系统,2004,25(4):667-670. 被引量:13
  • 4Sanna P oyh onen, Pedro Jover, Heikki Hy otyniemi. Independent component analysis of vibrations for fault diagnosis of an induction motor[C].International Conference on Circuits, Signals, and Systems (CSS 2003).Cancun, Mexico, 19 -21 May 2003, volume 1, pages 203 ~208.
  • 5Sanna P oyhonen, Marian Negrea, etc. Support Vector Classification for fault diagnostics of an electrical machine [C]. Proc. of the 6th Int. Conf.on Signal Processing (ICSPP2), Vol. 2, pp. 1719 - 1722, Beijing - China, August, 2002.
  • 6肖健华,吴今培,樊可清,杨叔子.基于支持向量机的齿轮故障诊断方法[J].中国制造业信息化(学术版),2003,32(2):107-109. 被引量:8
  • 7Junshui Ma,Yi Zhao,Stanley.OSU-SVM matlabtoolbox.http://www.ece.osu.edu/~maj/osu_svm/.
  • 8王小平,沈玉娣.支持向量机在轴承故障诊断中的应用[J].机床与液压,2003,31(4):320-322. 被引量:7

二级参考文献18

  • 1杨树莲,杨文献.Hilbert变换及其在机械故障诊断中的应用[J].山西矿业学院学报,1997,15(2):162-166. 被引量:9
  • 2VladimirN Vapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000.1-125.
  • 3许章遂 房立清 王希武 等.故障信息诊断原理及应用[M].北京:国防工业出版社,2000.11-32.
  • 4杨叔子 史铁林.设备诊断技术的现状与未来[A]..全国设备诊断技术学术会议''95论文集[C].武汉,1995.3~8.
  • 5Cherkassky V, Mulier F. Learming from Data: concepts,Therory and Methods. NY: John Viley&Sons, 1997.
  • 6James E. Berry. How To Track Rolling Element Bearing Health With Vibration Signature Analysis. Sound and Vibration [J]. November, 1991: 24-35.
  • 7Allwein E, Schapire R E Singer Y. Reducing muhiclass to binary: a unifying approach for margin classifiers [A]. Langley P. Proceedings of the 17th International Conference on MachineLearning [C]. California: Morgan Kaufinann, 2000: 9- 16.
  • 8Weston J, Watldns C. Multi - class support vector machine[R]. Technical report, University of London, 1998, CSD-TB-98 - 04.
  • 9方泽南,博士学位论文,1997年
  • 10阎平凡,人工神经网络,1993年

共引文献48

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部