摘要
由偏微分方程描述的均匀传输线至今还未有一种通用的求解方法,因此众多学者对传输线的理论问题仍在不断的探索和研究,其中均匀传输线稳态解的计算也是所研究的内容之一.提出了另一种计算有损均匀传输线正弦稳态解的方法.首先建立有损均匀传输线的复频域模型,解得线上电压电流在任意激励下的复频域解,随即得到关于线上电压电流的网络函数.然后根据网络函数与系统频率特性的关系,得出线上电压电流在正弦激励下的稳态解,最后通过计算实例验证了该结果的正确性.
There is no universal method of finding the analytic solutions to transmission lines discribed by partial differential equations, so many researchers are studying and developing transmission line theories. Computing steady-state solutions of uniform transmission lines is one part of the study. The paper introduces another method of computing sinsoidal steady-state solutions of lossy uniform transmission lines. First, the complex expressions of voltage and current with zero initial state are obtained from the complex frequency-domain model of lossy uniform tansmission lines. The network functions, which are the ratios of voltage and current' s image functions to the excitation' s image function, can be found from tile complex expressions. Sinusoidal steady-state solutions can be obtained by using the relation between network function and system's frequency characteristic. Finally, the method is demonstrated to be effective by an example.
出处
《重庆大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2005年第11期69-72,共4页
Journal of Chongqing University
关键词
有损均匀传输线
网络函数
频率特性
正弦稳态解
lossy uniform transmission lines
network function
frequency characteristic
sinusoidal steady-state soludons