期刊文献+

一类弧形弹性杆大变形的P-稳定性

P-STABILITY FOR LARGE DEFORMATION OF CIRCULAR ELASTIC RODS
下载PDF
导出
摘要 基于大变形理论建立弧形弹性杆大变形的数学模型,弹性杆的一端固定,另一端自由且在中间受一竖直向下的集中力,所建立的模型可变换为摆动方程的边值问题.借助特征值法,研究相应弹性变形非平凡解的P-稳定性. Based on large deformation theory, the mathematical model of deformation of the elastic circular rod with one end fixed and the other free under the force load acting at the midpoint is established. The model is reduced to a boundary value problem for a pendulum equation. With the aid of eigenvalue, the P-stability of some non-trivial solutions of the mathematical model is achieved.
出处 《北京工商大学学报(自然科学版)》 CAS 2005年第6期59-62,共4页 Journal of Beijing Technology and Business University:Natural Science Edition
基金 北京市自然科学基金资助项目(1042007)
关键词 大变形 摆动方程 边值问题 P-稳定性 large deformation boundary value problem eigenvalue P-stability
  • 相关文献

参考文献9

  • 1李世荣,宋曦,张靖华.用椭圆积分法求解轴线可伸长梁的弹性曲线[J].甘肃工业大学学报,2003,29(4):137-139. 被引量:4
  • 2殷先军.抓握结构中弹性棒变形的P-稳定性[J].北京理工大学学报,2004,24(6):559-562. 被引量:4
  • 3徐正廷.弹性梁柱的大变形问题[J].常州工业技术学院学报,1999,12(2):66-71. 被引量:3
  • 4Chow S N, Hale J K. Methods of Bifurcation Theory[M]. New York: Springer Verlag, 1982. 101 - 125.
  • 5Yin Xianjun, Wang Xiu'e. On circular elastic rods as nonlinear springs and gripper elements [ J ]. International Journal Engineering Science, 2002, 40(3):231-238.
  • 6Yin Xianjun. On Large Deformations of Elastic Circular Arcs[M]. Aachen: Shaker Verlag, 2003. 2 -137.
  • 7Yin Xianjun, Wang Xiu'e. Qualitative study on multiplicity of largely deformed elastic half rings[J]. European Journal of Mechanics A/Solids, 2003, 22(3):463-474.
  • 8Zeidler E. Nonlear Functional analysis and its application(IV), Application to mathematical physics[M]. New York: Springer Verlag, 1998. 112- 150.
  • 9Buttazzo G, Giaquinta M, Hildebrandt S. Onedimensional variational problem [M]. Oxford:Clarendon Press, 1998. 100-134.

二级参考文献14

  • 1金宝桢 杨式德 等.结构力学:下册[M].人民教育出版社,1961..
  • 2B.и.斯米尔诺夫.高等数学教程(第三卷,第三分册)[M].人民教育出版社,1979..
  • 3程昌均 朱正佑.结构的分叉与屈曲[M].兰州:兰州大学出版社,1991..
  • 4Tvergaard V. Studies of elastic-plastic instabilities[J]. Journal of Applied Mechanics, 1999,66:3-9.
  • 5Leipholz H. Stabilitaetstheorie[M]. Stuttgart: B. G. Teubner, 1968.
  • 6Chow S N, Hale J K. Methods of bifurcation theory[M]. New York: Springer-Verlag, 1982.
  • 7Yin Xianjun, Wang Xiu'e. On circular elastic rods as nonlinear springs and gripper elements[J]. International Journal of Engineering Science, 2002,40: 231-238.
  • 8Timoshenko S P, Gere J M. Mechanics of materials[M].[s.l]: Nostrand Peinhold Company, 1972.
  • 9Zeidler E. Nonlinear functional analysis and its application[M]. New York: Springer-Verlag, 1992.
  • 10秦元勋 王联 王慕秋.运动稳定性理论及其应用[M].北京: 科学出版社,1981..

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部