期刊文献+

紧支撑向量值双正交小波包 被引量:1

Compactly Supported Biorthogonal Vector-Valued Wavelet Packets
下载PDF
导出
摘要 研究向量值双正交小波包,给出一类紧支撑向量值双正交小波包的定义及其构造方法.讨论了这种向量值双正交小波包的性质. The notion of vector-valued multiresolution analysis is introduced. A class of compactly supported biorthogonal vector-valued wavelet packets is defined and constructed. The properties for a class of compactly supported biorthogonal vectorvalued wavelet packets has been discussed.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第4期1-5,共5页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金项目(10371105) 河南省自然科学基金资助项目(0211044800)
关键词 双正交 向量值多分辨分析 向量值尺度函数 向量值小波包 biorthogonal vector-valued multiresolution analysis vector-valued scaling functions vector-valued wavelet packets
  • 相关文献

参考文献8

  • 1Martin M B,Bell A E.New image compression technique using multiwavelet packets[J].IEEE Trans Image Processing,2001,10(4):500-511.
  • 2Toliyat H A,Abbaszadeh K,Rahimian M M,et al. Rail defect diagnosis using wavelet packet decomposition[J]. IEEE Trans Industry Applications, 2003,39(5):1 454-1 461.
  • 3Chui C K,Li Chun.Nonorthonormal wavelet packets[J]. SIAM Math Anal,1993,24(3):712-738.
  • 4Cohen A,Daubeches I. On the instability of arbitrary biorthogonal wavelet packets[J]. SIAM Math Anal,1993,24(5):1 340-1 354.
  • 5冷劲松,程正兴,黄廷祝.a尺度多重双正交小波包[J].工程数学学报,2001,18(F12):124-130. 被引量:19
  • 6陈清江,程正兴,冯晓霞.高维多重双正交小波包[J].应用数学,2005,18(3):358-364. 被引量:21
  • 7Xia X G,Suter B W.Vector-valued wavelets and vector filter banks[J]. IEEE Trans Signal Processing,1996,44(3):508-518.
  • 8Fowler J E,Hua L.Wavelet Transforms for Vector Fields Using Omnidirectionally Balanced Multiwavelets[J]. IEEE Trans. Signal Processing,2002,50(12):3 018-3 027.

二级参考文献17

  • 1程正兴.具有矩阵的小波包[J].工程数学学报,1994,11(1):15-28. 被引量:10
  • 2ChuiCK.小波分析导论[M].西安:西安交通大学出版社,1994..
  • 3Toliyat H A,Abbaszadeh K,Rahimian M M, Olson L E. Rail defect diagnosis using wavelet packet decomposition[J]. IEEE Transactions on Industry Applications, ,2003,39(5) :1451-1461.
  • 4Martin M B,Bell A E. New image compression technique using multiwavelet packets[J]. IEEE Transactions on Image Processing,2001,10(4):500-511.
  • 5Coifman R R, Meyer Y, Wickerhauser M V. Wavelet analysis and signal processing[A]. Beylkin G. Wavelets and their Applications[C]. Boston:Jones and Barlett, MA, 1992.
  • 6Chui C K,Chun L. Nonorthonormal wavelet packets[J] SIAM Math. Anal. , 1993,24(3) :712-738.
  • 7Cohen A, Daubeches I. On the instability of arbitrary biorthogonalwavelet packets[J]. SIAM. Math. Anal. , 1993,24(5) : 1340- 1354.
  • 8Shen Z. Nontensor product wavelet packets in L2 (R') [J]. SIAM. Math. Anal. , 1995,26 (4) :1061 - 1074.
  • 9Geronimo J, Hardin D P, Massopust P. Fractal functions and wavelet expansions based on several scaling functions[J]. J Approx Theory,1998;78:373-401
  • 10Marasovich J, Biorthogonal multiwavelets[J]. Dissertation Vanderbilt University, Nashville: TN,1996

共引文献35

同被引文献4

  • 1Ron A,Shen Z.Affine systems in L2(Rd):the analysis of the analysis operator[J].Funct Anal,1997,148(2):408-447.
  • 2Benedetto J J,Li S.The theory of multiresolution analysis frames and applications to filter banks[J].Appl Comput Harm Anal,1998,5:389-427.
  • 3Li S.A theory of generalized multiresolution structure and pseudoframes of translates[J].Fourier Anal Appl,2001,7(1):23-40.
  • 4Li S,Ogawa H.Pseudoframes for Subspaces with Applications[J].Fourier Anal Appl,2004,10(4):409-431.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部