期刊文献+

分形环轴向衍射特性的小波分析

Wavelet Analysis of Axial Property of Diffraction in Fractal Zone Plates
下载PDF
导出
摘要 对分形环的结构因子做了小波变换,通过模图在不同尺度下的演化,揭示出了相应Cantor集的结构特征.还用WTMM方法计算了轴向衍射强度的多重分形谱,并作了一些比较. We do wavelet transform of structure factor of fractal zone plates, and reveal the structure property of corresponding Cantor set from the evolution of modulus. We also treat the axial intensity distribution as multifractal, and compute singular spectrum. Some comparison is also offered.
作者 廖天河 高穹
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第4期54-57,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 国家自然科学基金(10347123)资助项目
关键词 分形环 小波变换 多重分形 fraetal zone plates wavelet transform multifraetal
  • 相关文献

参考文献13

  • 1Berry M V. Diffractals[J]. J Phys A, 1979 ,12(6): 781-797.
  • 2Allain C, Coiltre M. Optical diffraction on difractals[J]. Phys Rev B, 1986,33(5): 3 566-3 569.
  • 3Allain C, Coiltre M. Spatial spectrum of a general family of self-similar arrays[J]. Phys Rev A, 1987,36(12): 5 751-5 757.
  • 4Jaggard A D, Jaggard D L. Cantor ring diffractals[J]. Opt Comm, 1998,158: 141-148.
  • 5Furland W D, Saavedra G, Monsoriu J A, Patrignani J D. Axial behavior of Cantor ring diffractals[J]. J Opt. A: Pure Appl Opt, 2003,5: S1-S4.
  • 6Saavedra G, Furlan W D, Monsoriu J A. Fractal zone plates[J]. Opt Lett, 2003,28: 971-973.
  • 7Monsoriu J A, Saavedra G, Furlan W D. Fractal zone plates with variable lacunarity[J]. Opt Express, 2004,12(18): 4 227-4 234.
  • 8Davis J A, Ramirez L. Focusing property of fractal zone plates: experimental implementation with a liquid-crystal display[J]. Opt Lett, 2004,29(12): 1 321-1 323.
  • 9Halsey T C, Jensen M H. Fractal measures and their singularities: The characterization of strange sets[J]. Phys Rev A, 1986,33(2): 1 141-1 151.
  • 10Muzy J F, Bacry E,Arneodo A. Wavelets and multifractal formalism for singular signals: Application to turbulence data[J]. Phys Rev Lett, 1991,67(25): 3 515-3 518.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部