期刊文献+

R^2上一类非牛顿流体动力学方程组解的最优衰减率

Sharp Rate of Decay for Solutions to Non-Newtonian Fluid in R^2
原文传递
导出
摘要 本文利用Fourier分解方法讨论一类二维不可压缩非牛顿流体动力学方程组弱解的衰减性,证明了弱解在L^2范数下衰减率为(1+t)^(-1/2),和线性热传导方程解的衰减率一致,在此意义下本文的结果是最优的。 In this paper the authors study the decay rate for weak solutions to a class of the incompressible non-Newtonian fluids in R^2, and prove that the weak solutions decay in L^2 norm at (1+t)^1/2. The estimate for the decay rate is sharp in the sense that it coincides with that of the solution to a linear heat equation.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第6期1065-1070,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(100001013 10471047)
关键词 衰减率 弱解 非牛顿流体 Decay rate Weak solutions Non-Newtonian fluid
  • 相关文献

参考文献8

  • 1Ladyzhenskaya O. A., New equations for the description of the viscoue incompressible fluids and solvability in the large of the boundary value problems for them, in Boundary Value Problems of Mathematical Physics V, American Mathematical Society, Providence, R. I., 1970.
  • 2Lions J. L., Quelques méthodes de résolution des problèmes aux limits non linéares, Paris: Gauthier-Villiars,1969.
  • 3Ladyzhenskaya O. A., The mathematical theory of viscous incompressible fluids, New York: Gordon Breach,1969.
  • 4He C., Xin Z., On the decay properties of solutions to the nonstationary Navier-Stokes equations in R3, Proc.Royal Soc. Edinb. Sect. A, 2001, 131: 597-619.
  • 5Schonbek M. E., Large time behavior of solutions to the Navier-Stokes equations, Comm. P. D. E., 1986, 11:733-763.
  • 6Zhang L., Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equation, Comm. P. D. E., 1995,20: 119-127.
  • 7Wiegner M., Decay results for weak solutions of the Navier-Stokes equations in Rn, J. London Math. Soc.,1987, 35: 303-313.
  • 8Soltanov K. N., On some modification Navier-Stokes equations, Nonl. Anal., 2003, 52: 769-793.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部