摘要
本文利用Avery和Peterson引入的新的不动点定理,得出了泛函微分方程边值问题存在三个正解的充分条件并得出了有关新结果。
We obtain sufficient conditions for the existence of at least three positive solutions for the boundary value problem of a second order functional differential equation{x''(t)+q(t)f(t,x(t),x(t-r),x'(t))=0,0〈t〈1,r〈0,x(t)=ξ(t),-r≤r≤0,x(1)=0 this is an application of a new fixed point theorem introduced by Avery and Peterson.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2005年第6期1113-1120,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10471155)高校博士点专项科研基金(20020558092)广东省自然科学基金(031608)
关键词
泛函微分方程
边值问题
正解
不动点定理
Functional differential equation
Avery-Peterson fixed point theorem
Boundary value problem