摘要
利用Gaines和Mawhin的重合度理论,给出了一个周期环境下具有分布时滞的脉冲微分方程的正周期解的存在性的判定。与此同时,通过引入分片连续Lyapunov函数的方法,建立了脉冲效应下时滞微分方程的零解稳定性的充分条件。
With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solution of an impulsive equation with a distributed delay in a periodic environment. At the same time, effective sufficient conditions are found for stability via the approach of piece-wise continuous Lyapunov function introduced.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2005年第6期1137-1144,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金广西教育厅科研基金(600022)
关键词
正周期解
稳定性
重合度
Positive periodic solution
Stability
Coincidence degree