期刊文献+

脉冲时滞微分方程的周期性和稳定性研究 被引量:6

Periodicity and Stability in Impulsive Equations with Delays
原文传递
导出
摘要 利用Gaines和Mawhin的重合度理论,给出了一个周期环境下具有分布时滞的脉冲微分方程的正周期解的存在性的判定。与此同时,通过引入分片连续Lyapunov函数的方法,建立了脉冲效应下时滞微分方程的零解稳定性的充分条件。 With the help of a continuation theorem based on Gaines and Mawhin's coincidence degree, easily verifiable criteria are established for the global existence of positive periodic solution of an impulsive equation with a distributed delay in a periodic environment. At the same time, effective sufficient conditions are found for stability via the approach of piece-wise continuous Lyapunov function introduced.
作者 惠静 陈兰荪
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第6期1137-1144,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金广西教育厅科研基金(600022)
关键词 正周期解 稳定性 重合度 Positive periodic solution Stability Coincidence degree
  • 相关文献

参考文献12

  • 1Agur Z., Cojocaru L., Anderson R. and Danon Y., Pulse mass measles vaccination across age cohorts, Proc.Natl. Acad. Sci., 1993, USA90: 11698-11702.
  • 2Shulgin B., Stone L. and Agur Z., Pulse vaccination strategy in the SIR epidemic model, Bull. Math. Biol.,1998, 60: 1-26.
  • 3Panetta J. C., A mathematical moddel of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competition environment, Bull. Math. Biol., 1996, 58: 425-447.
  • 4Lakmeche A. and Arino O., Bifurcation of non trival periodic solutions of impulsive differential equations arising chemotherapeutic treatment, Dynamics of Continuous, Discrete and Impuilsive Systems, 2000, 7:265-287.
  • 5Bainov D. D. and Simeonov P. S., System with impulsive effect: stability, theory and applications, New York:John Wiley & Sons, 1989.
  • 6Bainov D. D. and Simeonov P. S., Impulsive differential equations: periodic solutions and applications, England: Longman Scientific & Technical, 1993.
  • 7Laksmikantham V., Bainov D. D. and Simeonov P. S., Theory of impulsive differential equations, Singapore:World Scientific, 1989.
  • 8Yu J. S. and Zhang B. G., Stability theorem for delay differential equations with impulses, J. Math. Anal.Appl., 1996, 199: 162-175.
  • 9Zhang B. G. and Gopalsamy K., Global attractivity and oscillations in a periodic Delay-Logistic equation, J.Math. Anal. Appl., 1990, 150:274-283.
  • 10Domoshnitsky A. and Drakhlin M., Nonoscillation of first order impulse differential equations with delay, J.Math. Anal. Appl., 1997, 206: 254-269.

同被引文献28

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部