摘要
以352226X2-2Z型货车滚动轴承为研究对象,通过小波包分析方法提取货车滚动轴承故障声发射信号特征向量,并将其作为神经网络的输入,通过概率神经网络(PNN)的模式识别功能实现故障类型分类,证明了小波神经网络在货车滚动轴承故障检测中的有效性。
The text uses rolling bearings352226X2-2Z as research object ,withdrawing the fault Acoustic Emission signal characteristic vetor by wavelet analytical method, and make it as the input of Neural Network, and design the Probabilistic Neural Network(PNN) to realize mode classification, proving the validity of wavelet Neural Network used in fault detection of rolling bearings.
出处
《机械》
2005年第11期52-54,共3页
Machinery
基金
河南省科技厅重点攻关项目(0223025200)
关键词
滚动轴承
小波包分析
神经网络
故障检测
rolling beafing
wavelet packet analysis
neural network
fault detection