摘要
采用直线回归方程、4次方程和指数增长式微分方程等数理分析方法,对全世界1953~2003年圈养大熊猫种群的发展趋势进行了分析。发现对大熊猫的圈养种群数量建立的回归方程是拟合很好的4次多项式方程,1953~1987年的圈养种群增长曲线成S型,1998年后的种群增长成直线或指数式。依此进行预测,从1998年以后只依靠现有饲养种群167只就可能使种群数量稳定增长,全世界种群数量2007年可突破200只,2009年可能达到220~240只,大概在15~22年后全世界饲养种群数量就能够翻一番,达到330多只。
To predict the development of captive Giant Panda (Ailurop^la melanoleuca ) Population, mathematical statistics such as: linear or four muhiple regression equation, differential equation in the exponential growth has been applied for analysing on 563 captive giant pandas in the world from 1953 to 2003. The results sgowed that four muhiple regression equation fitted good, and from 1953 to 1987. The census of captive giant panda was in “S” curve, but after 1998, the growth curve became linear and exponential. Since 1998, the captive population stared to sustain itself would be expected to be over 200 in 2007 and between 220-240 by 2009. With the next 15-22 years the captive population would be double that of 2003, to about 330 giant pandas.
出处
《四川动物》
CSCD
北大核心
2005年第4期484-489,共6页
Sichuan Journal of Zoology
基金
中国保护大熊猫研究中心资助项目~~
关键词
大熊猫
圈养种群
数学模型
giant pandas (Ailuropoda melanoleuca )
captive population
mathematical model