期刊文献+

基于电磁转矩特征频率提取的感应电机转子断条故障诊断

Rotor Broken Bar Fault Diagnosis of Induction Motors Based on Feature Frequency Extraction of the Electromagnetic Torque Signal
下载PDF
导出
摘要 分析了信号复值小波变换的瞬时频率提取原理,根据复解析小波系数的相位信息给出了信号瞬时频率提取算法,将其应用到电机启动电磁转矩信号中转子故障特征的提取上,实现转子断条故障的可靠诊断,并给出了电磁转矩计算及实验结果,实验证明了该方法的有效性。 The instantaneous frequency extraction principle of the signal complex wavelet transformation is analyzed. The instantaneous frequency extraction algorithm based on the phase information of the signal complex wavelet transformation coefficients is presented. The rotor broken bar fault characteristics in the startup electromagnetic torque can thus be extracted using the proposed method and can credibly diagnose the rotor broken bar fault. The result of electromagnetic torque calculation and experiment is provided. Experimental results demonstrates that the rotor broken bar fault diagnosis method is available.
出处 《江苏电机工程》 2005年第6期22-24,28,共4页 Jiangsu Electrical Engineering
关键词 感应电机 电磁转矩 转子断条 故障诊断 induction motor electromagnetic torque rotor broken bar fault diagnosis
  • 相关文献

参考文献6

  • 1BELLING A. On-field Experience with Online Diagnosis of Large Induction Motors Cage Failures Using MCSA [J] .IEEETrans. on Industry Applications, 2002,38 (4): 1045-1053.
  • 2牛发亮,黄进.笼型异步电动机状态监测与转子故障诊断方法对比分析[J].中小型电机,2004,31(4):48-52. 被引量:4
  • 3THOMAS V V,VASUDEVAN K. Online Cage Rotor Fault Detection Using Air-gap Torque Spectrum [J]. IEEE Trans.on Energy Conversion, 2003,18(2) :265-270.
  • 4TRZYNADLOWSKI AM,RITCHIE E. Comparative Investigation of Diagnostic Media for Induction Motors :A Case of Rotor Cage Faults [J]. IEEE Trans. on Industrial Electronics,2000,47 (5):1092-1099.
  • 5DELPRAT N,ESCUDIE B. Asymptotic Wavelet and Gabor Analysis:Extraction of Instantaneous Frequencies [J]. IEEE Trans.on Information Theory, 1992,38(2) :644-664.
  • 6CARMONA R,HWANG W L. Multiridge Detection and Timefrequency Reconstruction [J]. IEEE Trans. on Signal Processing,1999,47 ( 2 ): 480-492.

二级参考文献18

  • 1邱阿瑞.用起动电流的时变频谱诊断鼠笼异步电机转子故障[J].中国电机工程学报,1995,15(4):267-273. 被引量:56
  • 2Albert Bellini, Fiorenzo Filippetti, et al. Quantitave Evaluation of Induction Motor Broken Bars by Means of Electrical Signature Analysis. IEEE Tans. on Industry Applications, 2001, 37(5 ), 1248 - 1255.
  • 3Fiorenzo Filippetti, Giovanni Franceschini, et al. AI Techniques in Induction Machines Diagnosis Including the Speed Ripple Effect. IEEE Trans. on Industry Applications, 1998,34( 1 ) ,98 - 108.
  • 4Alberto Bellini. On-Field Experience With Online Diagnosis of Large Induction Motors Cage Failures Using MCSA. IEEE Trans. on Industry Applications, 2002, 38(4) ,1045 - 1053.
  • 5张龙照 邱阿瑞.用频谱分析方法检验异步电机转子故障[J].电工技术学报,1987,(4).
  • 6Hamid Nejjari, Mohamed El Hachemi Benbouzid. Monitoring and Diagnosis of Induction Motors Electrical Faults Using a Current Park's Vector Pattern Learning Approach. IEEE Trans. on Industry Applications, 2000,36(3) ,730- 735.
  • 7Kyusung Kim, Parlos, A.G. Induction motor fault diagnosis based on neuropredictors and wavelet signal processing. IEEE/ASME Trans. on Mechatronics, 2002,7(2) ,201 -219.
  • 8Zhongming Ye, Bin Wu. Online rotor bar breakage detection of three phase induction motors by wavelet packet decomposition and artificial neural network. Power Electronics Specialists Conference, 2001, IEEE 32nd Annual. 4 : 2209 - 2216.
  • 9Hirvonen R. On-line condition monitoring of defects in squirrel cage motors. Proceedings of the 1994 International Conference on Electrical Machines, Paris(France) ,2 :267 - 272.
  • 10S. M. A. Cruz, A.J. Marques Cardoso. Rotor Cage Fault Diagnosis in Three-Phase Induction Motors by the Total Instantaneous Power Spectral Analysis. Industry Applications Conference, 1999. Thirty-Fourth IAS Annual Meeting. 3 :1929 - 1934.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部