摘要
论文针对目前曲线光顺算法存在的问题,提出在小挠度情况下的利用曲线二阶导数平滑程度来判断曲线光顺性的准则,并在此基础上提出了一种采用最小二乘法来拟合曲线型值点列的二阶差商曲线,然后通过两次积分来反求出光顺曲线思想的曲线光顺算法,并给出了实际的算例来说明该算法的优越性。文中讨论了该方法的误差上界,从而能有效地控制算法在进行光顺时对曲线型值点的移动范围。
This paper presents a new method for smoothing of curves based on fitting the derivative of second order of curves.First,We present that the second order of curves can represent the smoothing of the curves with small flexibility. On this foundation,we fit the derivative of second order of curves by a polynomial fitting,then find an indefinite integral of this polynomial to get an approach of curves.The range of error will be presented in this paper to control the range of moving to points of curves easily.
出处
《计算机工程与应用》
CSCD
北大核心
2005年第33期86-90,114,共6页
Computer Engineering and Applications
关键词
光顺
曲线拟合
二阶导数
smoothing,fitting of curves,derivative of second order