期刊文献+

Analysis of a Free Boundary Problem Modeling Tumor Growth 被引量:10

Analysis of a Free Boundary Problem Modeling Tumor Growth
原文传递
导出
摘要 In this paper, we study a free boundary problem arising from the modeling of tumor growth. The problem comprises two unknown functions: R = R(t), the radius of the tumor, and u = u(r, t), the concentration of nutrient in the tumor. The function u satisfies a nonlinear reaction diffusion equation in the region 0 〈 r 〈 R(t), t 〉 0, and the function R satisfies a nonlinear integrodifferential equation containing u. Under some general conditions, we establish global existence of transient solutions, unique existence of a stationary solution, and convergence of transient solutions toward the stationary solution as t →∞. In this paper, we study a free boundary problem arising from the modeling of tumor growth. The problem comprises two unknown functions: R = R(t), the radius of the tumor, and u = u(r, t), the concentration of nutrient in the tumor. The function u satisfies a nonlinear reaction diffusion equation in the region 0 〈 r 〈 R(t), t 〉 0, and the function R satisfies a nonlinear integrodifferential equation containing u. Under some general conditions, we establish global existence of transient solutions, unique existence of a stationary solution, and convergence of transient solutions toward the stationary solution as t →∞.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第5期1071-1082,共12页 数学学报(英文版)
基金 Project supported by the China National Natural Science Foundation,Grant number:10171112
关键词 Free boundary problem Tumor growth Global solution Asymptotic behavior Free boundary problem, Tumor growth, Global solution, Asymptotic behavior
  • 相关文献

参考文献3

二级参考文献24

  • 1郑哲敏,周恒,张涵信,黄克智,白以龙.21世纪初的力学发展趋势[J].力学进展,1995,25(4):433-441. 被引量:44
  • 2Long C F,Acta Mech,1967年,3期,371页
  • 3Dundurs, J.: Mathematical Theory of Dislocations. Edited by Mura T, ASME, 1969.
  • 4Smith, E.:The interaction between dislocation and inhomogeneities-1. International Journal of Engineering Science. 6:129-143(1968).
  • 5Gong, S.X, Meguid, S.A.: A screw dislocation interaction with an elastic elliptical inhomogenety. International Journal of Engineering Science, 32:1221-1228(1994).
  • 6Santare, M.H, Keer, L.M.: Interaction between an edge dislocation and a rigid elliptical inclusion. J. Appl Mech, 53:382-385(1986).
  • 7Stagni, L, Lizzio, R.: Shape effects in the interaction between an edge dislocation and an elliptic inhomogeneity. Appl. Phys. A. 30:217-221(1983).
  • 8Warren, W.E.: The edge dislocation inside an elliptical inclusion.Mechanics of Materials, 2:319-330(1983).
  • 9Qaissaunee, M.T, Santare, M.H.: Edge dislocation interaction with an elliptical inclusion surrounding by an interfacial zone. The Quarterly Journal Mechanics and Applied Mathematics, 48:465-482(1995).
  • 10Liu, Y.W, Jiang, C.E: On the interaction between a screw dislocation and an elastic elliptical inhomogentey with an interphase laye.In: Mechanics and Material Engineering for Science and Experiments, New York Ltd, 98-102(2001).

共引文献12

同被引文献7

引证文献10

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部