摘要
In this paper, we study a free boundary problem arising from the modeling of tumor growth. The problem comprises two unknown functions: R = R(t), the radius of the tumor, and u = u(r, t), the concentration of nutrient in the tumor. The function u satisfies a nonlinear reaction diffusion equation in the region 0 〈 r 〈 R(t), t 〉 0, and the function R satisfies a nonlinear integrodifferential equation containing u. Under some general conditions, we establish global existence of transient solutions, unique existence of a stationary solution, and convergence of transient solutions toward the stationary solution as t →∞.
In this paper, we study a free boundary problem arising from the modeling of tumor growth. The problem comprises two unknown functions: R = R(t), the radius of the tumor, and u = u(r, t), the concentration of nutrient in the tumor. The function u satisfies a nonlinear reaction diffusion equation in the region 0 〈 r 〈 R(t), t 〉 0, and the function R satisfies a nonlinear integrodifferential equation containing u. Under some general conditions, we establish global existence of transient solutions, unique existence of a stationary solution, and convergence of transient solutions toward the stationary solution as t →∞.
基金
Project supported by the China National Natural Science Foundation,Grant number:10171112