期刊文献+

The Cauchy Problem for the Generalized Korteweg-de Vries-Benjamin-Ono Equation with Low Regularity Data 被引量:2

The Cauchy Problem for the Generalized Korteweg-de Vries-Benjamin-Ono Equation with Low Regularity Data
原文传递
导出
摘要 The Cauchy problem of the generalized Korteweg-de Vries-Benjamin-Ono equation is considered, and low regularity and limit behavior of the solutions are obtained. For k = 1, local well- posedness is obtained for data in H^s(R)(s 〉 -3/4). For k = 2, local result for data in H^S(R)(s 〉1/4) is obtained. For k = 3, local result for data in H^S(R)(s 〉 -1/6) is obtained. Moreover, the solutions of generalized Korteweg-de Vries-Benjamin-Ono equation converge to the solutions of KdV equation if the term of Benjamin-Ono equation tends to zero. The Cauchy problem of the generalized Korteweg-de Vries-Benjamin-Ono equation is considered, and low regularity and limit behavior of the solutions are obtained. For k = 1, local well- posedness is obtained for data in H^s(R)(s 〉 -3/4). For k = 2, local result for data in H^S(R)(s 〉1/4) is obtained. For k = 3, local result for data in H^S(R)(s 〉 -1/6) is obtained. Moreover, the solutions of generalized Korteweg-de Vries-Benjamin-Ono equation converge to the solutions of KdV equation if the term of Benjamin-Ono equation tends to zero.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第5期1191-1196,共6页 数学学报(英文版)
关键词 Generalized Korteweg-de Vries-Benjamin-Ono equation The Fourier restriction norm Low regularity solution Limit behavior Generalized Korteweg-de Vries-Benjamin-Ono equation, The Fourier restriction norm,Low regularity solution, Limit behavior
  • 相关文献

参考文献10

  • 1Kenig CE,Ponce G,Vega L.A bilinear estimate with applications to the Kdv equation[].Journal of the American Mathematical Society.1996
  • 2Kenig C E,Ponce G,Vega L.Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle[].Communications of the ACM.1993
  • 3Kenig C E,Ponce G,Vega L.The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices[].Duke Mathematical Journal.1993
  • 4Tao,T.Multilinear weighted convolution of L~2 functions,and applications to non-linear dispersive equations[].American Journal of Mathematics.2001
  • 5Grünrock,A.A bilinear Airy-estimate with application to gKdV-3[].arXiv:mathAP/.
  • 6Linares,F.L~2 Global well-posedness of the initial value problem associated to the Benjamin equation[].JDiffEq.1999
  • 7Tao,T.Global well-posedness of the Benjamin-Ono equation in H~1(R)[].JHyperbolic DiffEq.2004
  • 8Kenig,C.E,Koenig,K.D.On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations[].MathResLett.2003
  • 9Molinet,L.,Ribaud,F.Well-posedness results for the Benjamin-Ono equation with small initial data[].JMathPures Appl.2004
  • 10Kenig,C,Ponce,G,Vega,L.On the genrealized Benjamin-Ono equation[].TAMS.1994

同被引文献2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部