期刊文献+

基于细分曲面的快速原型制造研究 被引量:3

Subdivision surfaces-based mesh refinement for rapid prototyping
下载PDF
导出
摘要 针对快速成形制造中生成实体表面光滑度不高的问题,把细分曲面造型技术应用到快速成形制造中.先定义了顶点平坦度概念,然后对蝶形细分模式进行了改进,用此方法可以直接在初始的三角网格模型上提高模型的表面光滑度而避免了由CAD造形系统重新生成的问题,由此提出了一种可以提高生成实体表面光滑度方法.从光滑度分析和大量的实验结果可以看出,该方法可有效地提高实体表面光滑度,并具有较好的稳定性. In rapid prototyping, triangular meshes are the major shape representations that are usually generated by CAD system. One of the major problems in the field of rapid prototyping is the surface smoothness of prototyped objects. To solve this problem, a new method is proposed based on adaptive Butterfly subdivision scheme. The method can directly refine meshes without referring to their original CAD models, and thus can be used inside a prototyping system. A prototype system is developed and some examples are demonstrated. The results show that the method can improve the surface smoothness of the prototyped objects.
出处 《高技术通讯》 CAS CSCD 北大核心 2005年第11期44-49,共6页 Chinese High Technology Letters
基金 新材料领域项目
关键词 快速原型制造 光滑度 细分曲面 自适应蝶形细分曲面 rapid prototyping, smoothness, subdivision surface, adaptive Butterfly refinement
  • 相关文献

参考文献13

  • 1Jacobs P F. Rapid prototyping & manufacturing: fundamentals of stereolithgraphy. New York: McGraw Hill, Inc.1992.1-23
  • 2Barequet G, Kaplan Y. A data front-end for layered manufacturing. Computer Aided Design, 1998, 30(4) :231
  • 3Zorin D, Schroder P. Subdivision for modeling and animation.SIGGRAPH2000 Course Notes. ACM SIGGRAP, New Orleans, 2000. 13-21
  • 4Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design,1978,10(6) :350
  • 5Doo D, Sabin M. Behaviour of recursive division surfaces near extraordinary points. Computer Aided Design, 1978,10(6) :356
  • 6Loop C T. Smooth subdivision surfaces based on triangles. Utah:University of Utah, Dept. of Mathematics, 1987
  • 7Dyn N, Gregory J, Levin D. A buttery subdivision scheme for surface interpolation with tension control. ACM Trans Graph,1990,9(2): 160
  • 8Zorin D, Schroder P, Sweldens W. Interpolating subdivision for meshes with arbitrary topology. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH,NewOrleans, 1996. 189
  • 9Kobbelt L. Interpolatory subdivision on open quadrilateral nets with arbitrary topology. In: Proceedings of Eurographics,Computer Graphics Forum. France, 1996. 409
  • 10Kobbelt L. √3 Subdivision. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, New Orleans, 2000. 103

同被引文献22

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部