期刊文献+

基于改进的投影变换公式的车道识别方法 被引量:4

Lane detection method based on improved transform mapping formulas
原文传递
导出
摘要 现有车道识别方法易受道路上车辆和阴影的干扰,并且投影公式精度不高,不适用于摄像机安装俯仰角为0°的情况。为此对现有的投影公式进行了改进,在变换后的俯视图中使用圆曲线车道模型及基于密度的Hough变换进行车道识别。实验结果表明,该方法可以明显降低车辆、阴影对于车道识别的干扰,并且能够满足车道识别实时性的要求。 Conventional transform mapping formulas are not accurate for vehicular lane detection systems at zero CCD camera pitch angles, with the lane detection easily disturbed by the vehicles and shadows on the road. A lane detection approach based on improved transform mapping formulas was developed to solve these problems with the arc lane model and the density based Hough transform used in the transformed vertical view to detect the lane. Experimental results show that the method significantly reduces the disturbances due to the vehicles and shadows on the road and can provide real time lane detection.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第11期1530-1533,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家"十五"计划资助项目
关键词 机器视觉 车道识别 车道保持 投影变换 computer vision lane detection lane keeping transform mapping
  • 相关文献

参考文献7

  • 1Dickmanns E D. Vision for ground vehicles:History and prospects [J]. International Journal of Vehicle Autonomous Systems, 2002, 1(1):1-44.
  • 2Bertozzi M, Broggi A, Fascioli A. Vision-based intelligent vehicles:State of the art and perspectives [J]. Robotics and Autonomous Systems, 2000, 32(1):1-16.
  • 3Boudihir M E, Nourine R, Ziou D. Visual guidance of autonomous vehicle based on fuzzy perception [A]. IEEE International Conference on Intelligent Vehicles [C]. Piscataway:IEEE Service Center, 1998.
  • 4Bertozzi M, Broggi A, Fascioli A. An evolutionary approach to lane markings detection in road environments [A]. In Atti del 6° Convegno dell'Associazione Italiana per l'Intelligenza Artificiale [C]. Siena, Italy:Dipartimento di Matematica e Informatica, 2002.
  • 5章毓晋.图像工程 [M].北京:清华大学出版社,1999..
  • 6徐友春.[D].北京:清华大学,2003.
  • 7Dickmanns E D, Mysliwetz B D. Recursive 3-D road and relative ego-state recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2):199-213.

同被引文献18

  • 1管琰平,贺跃,刘培志,吕琳.基于彩色图像的非结构化道路检测[J].计算机应用,2005,25(12):2931-2934. 被引量:16
  • 2纪天明,贺跃,于同,王少军.智能车辆导航系统中的实时道路检测[J].计算机应用,2005,25(B12):228-230. 被引量:4
  • 3Morgan A D, Dagless E L, Milford D J,et al. Road Edge Tracking for Robot Road Following [ J ]. Journal of hnage and Vision Computing, 1990,8 ( 3 ) :233 - 240.
  • 4刘富强,田敏,胡振程.智能汽车中基于视觉的道路检测与跟踪算法[J].同济大学学报(自然科学版),2007,35(11):1535-1541. 被引量:21
  • 5Yu H. SVMC:Single-class classification with support vector machines[A].2003.
  • 6Claudio Rosito Jung,Christian Roberto Kelber. A lane departurewarning system based on a linear-parabolic lane model[A].2004.891-895.
  • 7Claudio Rosito Jung,Christian Roberto Kelber. A lane departure warning system using lateral offset with uncalibrated camera[A].2005.348-353.
  • 8ZHANG Jinyou, NAGEL H H. Texture-based seg- mentation of road images[C]. Intelligent Vehicle, IEEE Symposium-IV, 1994:260-265.
  • 9MCCAI.L J C, TRIVEDI M M. Video--based lane estimation and tracking for driver assistance: sur- vey. system, and evaluation[J]. IEEE Transactions on Intelligent Transportation Systems. 2006, 7(1) : 90- 27.
  • 10杨喜宁,段建民,高德芝,郑榜贵.基于改进Hough变换的车道线检测技术[J].计算机测量与控制,2010,18(2):292-294. 被引量:53

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部