期刊文献+

Single Nucleotide Polymorphisms (SNPs) Discovery and Linkage Disequilib-rium (LD) in Forest Trees 被引量:7

Single Nucleotide Polymorphisms (SNPs) Discovery and Linkage Disequilib-rium (LD) in Forest Trees
下载PDF
导出
摘要 With completion of the Populus genome sequencing project and the availability of many expressed sequence tags (ESTs) databases in forest trees, attention is now rapidly shifting towards the study of individual genetic variation in natural populations. The most abundant form of genetic variation in many eukaryotic species is represented by single nucleotide polymorphisms (SNPs), which can account for heritable inter-individual differences in complex phenotypes. Unlike humans, the linkage disequilibrium (LD) rapidly decays within candidate genes in forest trees. Thus, SNPs-based candidate gene association studies are considered to be a most effective approach to dissect the complex quantitative traits in forest trees. The present study demonstrates that LD mapping can be used to identify alleles associated with quantitative traits and suggests that this new approach could be particularly useful for performing breeding programs in forest trees. In this review, we will describe the fundamentals, patterns of SNPs distribution and frequency, summarize recent advances in SNPs discovery and LD and comment on the application of LD in the dissection of complex quantitative traits in forest tress. We also put forward the outlook for future SNPs-based association analysis of quantitative traits in forest trees. With completion of the Populus genome sequencing project and the availability of many expressed sequence tags (ESTs) databases in forest trees, attention is now rapidly shifting towards the study of individual genetic variation in natural populations. The most abundant form of genetic variation in many eukaryotic species is represented by single nucleotide polymorphisms (SNPs), which can account for heritable inter-individual differences in complex phenotypes. Unlike humans, the linkage disequilibrium (LD) rapidly decays within candidate genes in forest trees. Thus, SNPs-based candidate gene association studies are considered to be a most effective approach to dissect the complex quantitative traits in forest trees. The present study demonstrates that LD mapping can be used to identify alleles associated with quantitative traits and suggests that this new approach could be particularly useful for performing breeding programs in forest trees. In this review, we will describe the fundamentals, patterns of SNPs distribution and frequency, summarize recent advances in SNPs discovery and LD and comment on the application of LD in the dissection of complex quantitative traits in forest tress. We also put forward the outlook for future SNPs-based association analysis of quantitative traits in forest trees.
出处 《Forestry Studies in China》 CAS 2005年第3期1-14,共14页 中国林学(英文版)
基金 SupportedbytheNationalNaturalScienceFoundationofChina(GrantNo.30471409)andtheNational"863"Project(GrantNo.2002AA241071)
关键词 single nucleotide polymorphisms (SNPs) linkage disequilibrium (LD) quantitative traits association studies forest tree single nucleotide polymorphisms (SNPs), linkage disequilibrium (LD), quantitative traits, association studies, forest tree
  • 相关文献

同被引文献72

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部