期刊文献+

一类激励抑制型时滞神经网络模型解的收敛性 被引量:1

CONVERGENCE OF SOLUTIONS FOR A EXCITE-FRUSTRATED NEURAL NETWORK MODEL
下载PDF
导出
摘要 本文考虑一类激励抑制型时滞神经网络模型解的收敛性.利用分析的方法并结合平面系统的几何特性,得出初值=(,φΨ)∈R2,在响应区间[a,b]的端点a和b处不振动时,解(x(t),y(t))→(0,0)(t→+∞). This paper presents the convergence of solutions for excite-frustrate neural network, we find that every solution with initial value Ф=(P,ψ) in some given fields is converge to the point (0,0).
出处 《经济数学》 2005年第3期323-326,共4页 Journal of Quantitative Economics
关键词 激励-抑制型 收敛性 神经网络 Excite-frustrated, convergence, neural network
  • 相关文献

参考文献4

二级参考文献10

  • 1[1]Huang Lihong,Wu Jianhong.Dynamics of inhibitory artificial neural networks with threshold nonlinearity[J].Fields Institute Communications,2001,29:235-243.
  • 2[2]Pakdaman K,Malta C P,Grotta-Ragazzo C,et al.Transient oscillations in continuous-time excitatory ring neural networks with delay[J].Physical Review E,1997,55:3234-3248.
  • 3[3]Pakdaman K,Grotta-Ragazzo C,Malta C P.Transient regime duration in continuous-time neural networks with delay[J].Physical Review E,1998,58:3623-3627.
  • 4[4]Pakdaman K,Grotta-Ragazzo C,Malta C P,et al.Effect of delay on the boundary of the basin of attraction in a system of two neurons[J].Neural Networks,1998,11:509-519.
  • 5[5]Hoppensteat F C,Izhikevich E M.Weakly Connected Neural Networks[M].New York:Springer,1997.
  • 6[6]Wu J.Introduction to Neural Dynamics[M].Toronto:York University Press,1999.
  • 7[1]Huang Lihong, Wu Jianong. Joint Effects of Threshold and Synaptic Delay on Dynamics of Artificial Neural Networks with Mc Culloch-Pitts Nonlinearity, 1999. Fields Institute Communications, 2001, 29:235-243
  • 8[2]Huang Lihong, Wu Jianhong. The Role of Threshold in Preventing Delay-induced Oscillations ofFrusbrated Neural Networks with McCulloch-Pitts Nonlinearity, 1999. Int. J. Math. Game Theory and Algebra, 2001, 11(6): 71-100
  • 9[3]Padaman K, Malta C P, Co Grotta-Ragazzo, Arino O, Vibert J F. Fransient Oscillations in Continuous time Excitatory Ring Nearal Networks with Delay. Physical Review E, 1997, 55:3234-3248
  • 10[4]Pakdaman K, Grotta-Ragazzo C, Malta C P. Transient Regime Duration in Continuous-time Neural Networks with Delay. Physical Review E, 1998, 58:3623-3627

共引文献8

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部