期刊文献+

用连续-非连续方法分析混凝土梁的破坏过程 被引量:1

CONTINUOUS-DISCONTINUOUS METHOD FOR FAILURE PROCESS OF CONCRETE BEAM
下载PDF
导出
摘要 采用有限元形函数作为单位分解函数,位移间断用富集节点的附加自由度表示,建立了允许在单元内部位移间断的连续、非连续模型。非连续位移的扩展路径完全与网格结构无关。不同于以非协调应变为基础的嵌入非连续模型,对单元的类型没有限制而且间断位移可以贯穿单元边界,与扩展有限元方法在构造上也有本质的区别。结合粘结裂纹模型,对混凝土梁在剪切作用下的断裂过程模拟说明了该方法的有效性。 Using finite element shape function as partitions of unit, the displacement jump across a crack is represented by extra freedom degree of enriched node. Continuous-discontinuous displacement model allowing the displacement of internal element discretion is developed. The expansion path of discontinuouos displacement is completely independent of the mesh structure. Unlike so-called embedded enhanced discontiniuity model, which is based on incompatible strain, there is no restriction on the type of underlying solid finite element that can be used and displacement jumps are continuous across element boundaries. Physical concept of the model is also different from that of the extended finite element method. Combined with cohesive crack model, the effectiveness of the proposed approach is demonstrated by simulating the fracure process of concrete beam under shear loads.
出处 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2005年第23期4335-4340,共6页 Chinese Journal of Rock Mechanics and Engineering
关键词 结构力学 单位分解 富集节点 非连续近似 嵌入非连续模型 扩展有限元 断裂过程 structural mechanics partitions of unit enriched node discontinuous approximation embedded enhanced discontiniuity model extended finite element fracture process
  • 相关文献

参考文献15

  • 1Rots J G. Computational modeling of concrete fracture[Ph. D. Thesis][D]. Delft,Netherlands:Delft University of Technology,1988.
  • 2Jirásek M,Zimmermann T. Analysis of rotating crack model[J]. Journal of Engineering Mechanics,ASCE,1998,124(8):842-851.
  • 3Jirásek M,Zimmermann T. Rotating crack model with transition to scalar damage[J]. Journal of Engineering Mechanics,ASCE,1998,124(3):277-284.
  • 4Ortiz M,Leroy Y,Needleman A. A finite element method for localized failure analysis[J]. Computer Methods in Applied Mechanics and Engineering,1987,61(2):189-214.
  • 5Dvorkin E N,Cuitiňo A M,Gioia G. Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions[J]. International Journal for Numerical Methods in Engineering,1990,30(3):541-564.
  • 6Klisinski M,Runesson K,Sture S. Finite element with inner softening band[J]. Journal of Engineering Mechanics,ASCE,1991,117(3):575-587.
  • 7Olofsson T,Klisinski M,Nedar P. Inner softening bands:a new approach to localization in finite elements[A]. In:Mang H,Bicanic N,de Borst R ed. Computational Modelling of Concrete Structures[C]. Swansea,UK:Pineridge Press,1994. 373-382.
  • 8Simo J C,Oliver J. A new approach to the analysis and simulation of strain softening in solids[A]. In:Bazant Z P,Bittnar Z,Jirásek M,et al. ed. Fracture and Damage in Quasibrittle Structures[C]. London:E and FN Spon,1994. 25-39.
  • 9Jirásek M. Comparative study on finite elements with embedded discontinuities[J]. Computer Methods in Applied Mechanics and Engineering,2000,188(1/3):307-330.
  • 10Moes N,Dolbow J,Belytschko T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering,1999,46(1):131-150.

共引文献5

同被引文献10

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部