期刊文献+

对流扩散方程的三层 WENO-MMOCAA 差分方法 被引量:3

THE THREE-STEP WENO-MMOCAA DIFFERENCE METHOD FOR CONVECTION DIFFUSION EQUATION
原文传递
导出
摘要 本文把三层修正特征线法,MMOCAA 差分方法及WENO 插值相结合,提出了求解对流扩散方程的三层WENO-MMOCAA 差分格式.此格式关于时间具有二阶精度,关于空间具有二阶以上精度且可避免基于二次以上Lagrange 插值的三层MMOCAA 差分方法在解的大梯度附近所产生的振荡.本文使用新的分析方法,给出了格式的误差估计.本文的数值算例表明新格式可消除振荡. Combing the three-step modified method of characteristics, MMOCAA difference method with WENO interplation, the three-step WENO-MMOCAA finite difference method is established for convectiondominated diffusion problem in the paper. The scheme is two-order accurate in time and more than two-order accurate in space. The scheme is free from the oscillation near the steep front, with which the problem is solved by three-step MMOCAA finite difference method based on m-order (m ≥ 2) Lagrange interplation. Using the new analysis method, we give the estimate analysis of the scheme. The numerical example show that the new scheme can erase the oscillation.
作者 由同顺
出处 《应用数学学报》 CSCD 北大核心 2005年第4期713-722,共10页 Acta Mathematicae Applicatae Sinica
基金 南开大学科技创新基金(05-06号)资助项目.
关键词 对流占优扩散方程 三层修正特征线法 MMOCAA差分方法 WENO插值 convection-dominated diffusion problem the three-step modified method of ch^razteristics MMOCAA finite difference method WENO interplation
  • 相关文献

参考文献5

  • 1Ewing R E, Russell T F. Multistep Galerkin Method Along Characteristics for Convect-diffusion Problems. Advances in Computer Methods for Partial Differentia] Equations. Vichnevetsky R,Stepleman R S, eds, IMACS, 1981, 28-36.
  • 2Douglas J Jr, Huang C S, Pereira F. The Modified Method of Charawith Adjusted Advection. Numer.Math, 1999, 83:353-369.
  • 3Liu X D, Osher Chin T. Weighted Essentially Nonoscillatory Scheme. J. Comput. Phys, 1994, 115:200-212.
  • 4Jiang G, Shu C W. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys, 1996,126:202-228.
  • 5由同顺,孙澈.非线性对流-扩散方程初边值问题的特征-差分解法[J].计算数学,1993,15(2):143-155. 被引量:20

二级参考文献2

共引文献19

同被引文献23

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部